These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 20376522)
1. Three-dimensional finite element modeling of pericellular matrix and cell mechanics in the nucleus pulposus of the intervertebral disk based on in situ morphology. Cao L; Guilak F; Setton LA Biomech Model Mechanobiol; 2011 Feb; 10(1):1-10. PubMed ID: 20376522 [TBL] [Abstract][Full Text] [Related]
2. Pericellular Matrix Mechanics in the Anulus Fibrosus Predicted by a Three-Dimensional Finite Element Model and In Situ Morphology. Cao L; Guilak F; Setton LA Cell Mol Bioeng; 2009 Sep; 2(3):306-319. PubMed ID: 19946619 [TBL] [Abstract][Full Text] [Related]
3. The micromechanical environment of intervertebral disc cells determined by a finite deformation, anisotropic, and biphasic finite element model. Baer AE; Laursen TA; Guilak F; Setton LA J Biomech Eng; 2003 Feb; 125(1):1-11. PubMed ID: 12661192 [TBL] [Abstract][Full Text] [Related]
4. The role of extracellular matrix elasticity and composition in regulating the nucleus pulposus cell phenotype in the intervertebral disc: a narrative review. Hwang PY; Chen J; Jing L; Hoffman BD; Setton LA J Biomech Eng; 2014 Feb; 136(2):021010. PubMed ID: 24390195 [TBL] [Abstract][Full Text] [Related]
5. An axisymmetric boundary element model for determination of articular cartilage pericellular matrix properties in situ via inverse analysis of chondron deformation. Kim E; Guilak F; Haider MA J Biomech Eng; 2010 Mar; 132(3):031011. PubMed ID: 20459199 [TBL] [Abstract][Full Text] [Related]
6. The dynamic mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions under cyclic compressive loading. Kim E; Guilak F; Haider MA J Biomech Eng; 2008 Dec; 130(6):061009. PubMed ID: 19045538 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional morphology of the pericellular matrix of intervertebral disc cells in the rat. Cao L; Guilak F; Setton LA J Anat; 2007 Oct; 211(4):444-52. PubMed ID: 17672847 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of nucleus pulposus fluid velocity and pressure alteration induced by cartilage endplate sclerosis using a poro-elastic finite element analysis. Hassan CR; Lee W; Komatsu DE; Qin YX Biomech Model Mechanobiol; 2021 Feb; 20(1):281-291. PubMed ID: 32949306 [TBL] [Abstract][Full Text] [Related]
9. Dependence of mechanical behavior of the murine tail disc on regional material properties: a parametric finite element study. Hsieh AH; Wagner DR; Cheng LY; Lotz JC J Biomech Eng; 2005 Dec; 127(7):1158-67. PubMed ID: 16502658 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional inhomogeneous triphasic finite-element analysis of physical signals and solute transport in human intervertebral disc under axial compression. Yao H; Gu WY J Biomech; 2007; 40(9):2071-7. PubMed ID: 17125776 [TBL] [Abstract][Full Text] [Related]
12. Chondrocyte death after mechanically overloading degenerated human intervertebral disk explants is associated with a structurally impaired pericellular matrix. Hofmann UK; Steidle J; Danalache M; Bonnaire F; Walter C; Rolauffs B J Tissue Eng Regen Med; 2018 Sep; 12(9):2000-2010. PubMed ID: 30053767 [TBL] [Abstract][Full Text] [Related]
13. The influence of artificial nucleus pulposus replacement on stress distribution in the cartilaginous endplate in a 3-dimensional finite element model of the lumbar intervertebral disc. Wang Y; Yi XD; Li CD Medicine (Baltimore); 2017 Dec; 96(50):e9149. PubMed ID: 29390319 [TBL] [Abstract][Full Text] [Related]
14. Elastic fibers: The missing key to improve engineering concepts for reconstruction of the Nucleus Pulposus in the intervertebral disc. Tavakoli J; Diwan AD; Tipper JL Acta Biomater; 2020 Sep; 113():407-416. PubMed ID: 32531396 [TBL] [Abstract][Full Text] [Related]
15. Assessment of intervertebral disc degeneration-related properties using finite element models based on [Formula: see text]-weighted MRI data. Chetoui MA; Boiron O; Ghiss M; Dogui A; Deplano V Biomech Model Mechanobiol; 2019 Feb; 18(1):17-28. PubMed ID: 30074099 [TBL] [Abstract][Full Text] [Related]
17. Effect of nucleus replacement device properties on lumbar spine mechanics. Rundell SA; Guerin HL; Auerbach JD; Kurtz SM Spine (Phila Pa 1976); 2009 Sep; 34(19):2022-32. PubMed ID: 19730210 [TBL] [Abstract][Full Text] [Related]
18. A finite element model of cell-matrix interactions to study the differential effect of scaffold composition on chondrogenic response to mechanical stimulation. Appelman TP; Mizrahi J; Seliktar D J Biomech Eng; 2011 Apr; 133(4):041010. PubMed ID: 21428684 [TBL] [Abstract][Full Text] [Related]
19. Extra-fibrillar matrix mechanics of annulus fibrosus in tension and compression. Cortes DH; Elliott DM Biomech Model Mechanobiol; 2012 Jul; 11(6):781-90. PubMed ID: 21964839 [TBL] [Abstract][Full Text] [Related]
20. The effect of creep on human lumbar intervertebral disk impact mechanics. Jamison D; Marcolongo MS J Biomech Eng; 2014 Mar; 136(3):031006. PubMed ID: 24292391 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]