BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 20376612)

  • 1. The chemokine network in acute myelogenous leukemia: molecular mechanisms involved in leukemogenesis and therapeutic implications.
    Kittang AO; Hatfield K; Sand K; Reikvam H; Bruserud Ø
    Curr Top Microbiol Immunol; 2010; 341():149-72. PubMed ID: 20376612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The chemokine system and its contribution to leukemogenesis and treatment responsiveness in patients with acute myeloid leukemia.
    Olsnes AM; Hatfield KJ; Bruserud Ø
    J BUON; 2009 Sep; 14 Suppl 1():S131-40. PubMed ID: 19785055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subclassification of patients with acute myelogenous leukemia based on chemokine responsiveness and constitutive chemokine release by their leukemic cells.
    Bruserud Ø; Ryningen A; Olsnes AM; Stordrange L; Øyan AM; Kalland KH; Gjertsen BT
    Haematologica; 2007 Mar; 92(3):332-41. PubMed ID: 17339182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The protein kinase C agonist PEP005 increases NF-kappaB expression, induces differentiation and increases constitutive chemokine release by primary acute myeloid leukaemia cells.
    Olsnes AM; Ersvaer E; Ryningen A; Paulsen K; Hampson P; Lord JM; Gjertsen BT; Kristoffersen EK; Bruserud Ø
    Br J Haematol; 2009 Jun; 145(6):761-74. PubMed ID: 19388934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro induction of a dendritic cell phenotype in primary human acute myelogenous leukemia (AML) blasts alters the chemokine release profile and increases the levels of T cell chemotactic CCL17 and CCL22.
    Olsnes AM; Ryningen A; Ersvaer E; Bruserud Ø
    J Interferon Cytokine Res; 2008 May; 28(5):297-310. PubMed ID: 18547160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting the CXCL12/CXCR4 axis in acute myeloid leukemia: from bench to bedside.
    Cho BS; Kim HJ; Konopleva M
    Korean J Intern Med; 2017 Mar; 32(2):248-257. PubMed ID: 28219003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The CXCR4 antagonist AMD3100 impairs survival of human AML cells and induces their differentiation.
    Tavor S; Eisenbach M; Jacob-Hirsch J; Golan T; Petit I; Benzion K; Kay S; Baron S; Amariglio N; Deutsch V; Naparstek E; Rechavi G
    Leukemia; 2008 Dec; 22(12):2151-5158. PubMed ID: 18769446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic chemotherapy-induced upregulation of CXCR4 expression: a mechanism of therapeutic resistance in pediatric AML.
    Sison EA; McIntyre E; Magoon D; Brown P
    Mol Cancer Res; 2013 Sep; 11(9):1004-16. PubMed ID: 23754844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CXCL1, CXCL10 and CXCL12 Chemokines are Variously Expressed in Acute Myeloid Leukemia Patients Prior and Post Bone Marrow Transplantation.
    Yazdani B; Hassanshahi G; Mousavi Z; Ahmadi Z; Khorramdelazad H; Moradabadi A; Shafiepoor M; Fatehi A
    Asian Pac J Cancer Prev; 2021 Oct; 22(10):3377-3384. PubMed ID: 34711015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. T lymphocyte chemotactic chemokines in acute myelogenous leukemia (AML): local release by native human AML blasts and systemic levels of CXCL10 (IP-10), CCL5 (RANTES) and CCL17 (TARC).
    Olsnes AM; Motorin D; Ryningen A; Zaritskey AY; Bruserud Ø
    Cancer Immunol Immunother; 2006 Jul; 55(7):830-40. PubMed ID: 16267679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting primary acute myeloid leukemia with a new CXCR4 antagonist IgG1 antibody (PF-06747143).
    Zhang Y; Saavedra E; Tang R; Gu Y; Lappin P; Trajkovic D; Liu SH; Smeal T; Fantin V; De Botton S; Legrand O; Delhommeau F; Pernasetti F; Louache F
    Sci Rep; 2017 Aug; 7(1):7305. PubMed ID: 28779088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The angioregulatory cytokine network in human acute myeloid leukemia - from leukemogenesis via remission induction to stem cell transplantation.
    Reikvam H; Hatfield KJ; Fredly H; Nepstad I; Mosevoll KA; Bruserud Ø
    Eur Cytokine Netw; 2012; 23(4):140-53. PubMed ID: 23328436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional CXCR4-expressing microparticles and SDF-1 correlate with circulating acute myelogenous leukemia cells.
    Kalinkovich A; Tavor S; Avigdor A; Kahn J; Brill A; Petit I; Goichberg P; Tesio M; Netzer N; Naparstek E; Hardan I; Nagler A; Resnick I; Tsimanis A; Lapidot T
    Cancer Res; 2006 Nov; 66(22):11013-20. PubMed ID: 17108140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BMS-936564/MDX-1338: a fully human anti-CXCR4 antibody induces apoptosis in vitro and shows antitumor activity in vivo in hematologic malignancies.
    Kuhne MR; Mulvey T; Belanger B; Chen S; Pan C; Chong C; Cao F; Niekro W; Kempe T; Henning KA; Cohen LJ; Korman AJ; Cardarelli PM
    Clin Cancer Res; 2013 Jan; 19(2):357-66. PubMed ID: 23213054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of CXC chemokine ligand (CXCL)12-CXC chemokine receptor (CXCR)4 signalling in the migration of neural stem cells towards a brain tumour.
    van der Meulen AA; Biber K; Lukovac S; Balasubramaniyan V; den Dunnen WF; Boddeke HW; Mooij JJ
    Neuropathol Appl Neurobiol; 2009 Dec; 35(6):579-91. PubMed ID: 19627512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CXCR4 inhibitors selectively eliminate CXCR4-expressing human acute myeloid leukemia cells in NOG mouse model.
    Zhang Y; Patel S; Abdelouahab H; Wittner M; Willekens C; Shen S; Betems A; Joulin V; Opolon P; Bawa O; Pasquier F; Ito M; Fujii N; Gonin P; Solary E; Vainchenker W; Coppo P; De Botton S; Louache F
    Cell Death Dis; 2012 Oct; 3(10):e396. PubMed ID: 23034331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defining the in vivo characteristics of acute myeloid leukemia cells behavior by intravital imaging.
    Duarte D; Amarteifio S; Ang H; Kong IY; Ruivo N; Pruessner G; Hawkins ED; Lo Celso C
    Immunol Cell Biol; 2019 Feb; 97(2):229-235. PubMed ID: 30422351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone marrow stromal cells and the upregulation of interleukin-8 production in human T-cell acute lymphoblastic leukemia through the CXCL12/CXCR4 axis and the NF-kappaB and JNK/AP-1 pathways.
    Scupoli MT; Donadelli M; Cioffi F; Rossi M; Perbellini O; Malpeli G; Corbioli S; Vinante F; Krampera M; Palmieri M; Scarpa A; Ariola C; Foà R; Pizzolo G
    Haematologica; 2008 Apr; 93(4):524-32. PubMed ID: 18322253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CD44 is involved in CXCL-12 induced acute myeloid leukemia HL-60 cell polarity.
    Zhou L; Guo X; Jing BA; Zhao L
    Biocell; 2010 Aug; 34(2):91-4. PubMed ID: 20925198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CXCR4 Signaling Has a CXCL12-Independent Essential Role in Murine MLL-AF9-Driven Acute Myeloid Leukemia.
    Ramakrishnan R; Peña-Martínez P; Agarwal P; Rodriguez-Zabala M; Chapellier M; Högberg C; Eriksson M; Yudovich D; Shah M; Ehinger M; Nilsson B; Larsson J; Hagström-Andersson A; Ebert BL; Bhatia R; Järås M
    Cell Rep; 2020 May; 31(8):107684. PubMed ID: 32460032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.