BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 20376631)

  • 1. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases.
    Park CS; Yoo MH; Noh KH; Oh DK
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):9-19. PubMed ID: 20376631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of glycosidases that hydrolyze the specific positions and types of sugar moieties in ginsenosides.
    Shin KC; Oh DK
    Crit Rev Biotechnol; 2016 Dec; 36(6):1036-1049. PubMed ID: 26383974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass production of the ginsenoside Rg3(S) through the combinative use of two glycoside hydrolases.
    Kim JK; Cui CH; Liu Q; Yoon MH; Kim SC; Im WT
    Food Chem; 2013 Nov; 141(2):1369-77. PubMed ID: 23790926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploration and Characterization of Novel Glycoside Hydrolases from the Whole Genome of
    Siddiqi MZ; Srinivasan S; Park HY; Im WT
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32059542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete Biotransformation of Protopanaxatriol-Type Ginsenosides in
    Yang EJ; Shin KC; Lee DY; Oh DK
    J Microbiol Biotechnol; 2018 Feb; 28(2):255-261. PubMed ID: 29169217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of major ginsenoside Rb1 to ginsenoside F2 by Caulobacter leidyia.
    Cheng LQ; Kim MK; Lee JW; Lee YJ; Yang DC
    Biotechnol Lett; 2006 Jul; 28(14):1121-7. PubMed ID: 16788737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave degradation of floatation-enriched ginsenoside extract from Panax quinquefolium L. leaf.
    Bai Y; Zhao L; Qu C; Meng X; Zhang H
    J Agric Food Chem; 2009 Nov; 57(21):10252-60. PubMed ID: 19821564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compound K Production from Red Ginseng Extract by β-Glycosidase from Sulfolobus solfataricus Supplemented with α-L-Arabinofuranosidase from Caldicellulosiruptor saccharolyticus.
    Shin KC; Choi HY; Seo MJ; Oh DK
    PLoS One; 2015; 10(12):e0145876. PubMed ID: 26710074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a novel arabinose-tolerant α-L-arabinofuranosidase with high ginsenoside Rc to ginsenoside Rd bioconversion productivity.
    Xie J; Zhao D; Zhao L; Pei J; Xiao W; Ding G; Wang Z; Xu J
    J Appl Microbiol; 2016 Mar; 120(3):647-60. PubMed ID: 26725313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Advances in studies on metabolism and biotansformation of ginsenosides in vitro].
    Fan L; Shi H; Li X
    Zhongguo Zhong Yao Za Zhi; 2011 Aug; 36(15):2021-6. PubMed ID: 22066432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro metabolism of ginsenosides by the ginseng root pathogen Pythium irregulare.
    Yousef LF; Bernards MA
    Phytochemistry; 2006 Aug; 67(16):1740-9. PubMed ID: 16242739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a novel ginsenoside-hydrolyzing α-L-arabinofuranosidase, AbfA, from Rhodanobacter ginsenosidimutans Gsoil 3054T.
    An DS; Cui CH; Sung BH; Yang HC; Kim SC; Lee ST; Im WT; Kim SG
    Appl Microbiol Biotechnol; 2012 May; 94(3):673-82. PubMed ID: 22159603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of the expression level of recombinant ginsenoside-transforming β-glucosidase in GRAS hosts and mass production of the ginsenoside Rh2-Mix.
    Siddiqi MZ; Cui CH; Park SK; Han NS; Kim SC; Im WT
    PLoS One; 2017; 12(4):e0176098. PubMed ID: 28423055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Advances in studies on biotransformation of ginsensides].
    Guo CL; Cui XM; Yang XY; Wu S
    Zhongguo Zhong Yao Za Zhi; 2014 Oct; 39(20):3899-904. PubMed ID: 25751936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient production of diverse rare ginsenosides using combinatorial biotechnology.
    Cao L; Wu H; Zhang H; Zhao Q; Yin X; Zheng D; Li C; Kim MJ; Kim P; Xue Z; Wang Y; Li Y
    Biotechnol Bioeng; 2020 Jun; 117(6):1615-1627. PubMed ID: 32144753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of major ginsenoside Rb1 to 20(S)-ginsenoside Rg3 by Microbacterium sp. GS514.
    Cheng LQ; Na JR; Bang MH; Kim MK; Yang DC
    Phytochemistry; 2008 Jan; 69(1):218-24. PubMed ID: 17764709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of novel ginsenoside-hydrolyzing glycosidase from Microbacterium esteraromaticum that transforms ginsenoside Rb2 to rare ginsenoside 20(S)-Rg3.
    Quan LH; Wang C; Jin Y; Wang TR; Kim YJ; Yang DC
    Antonie Van Leeuwenhoek; 2013 Jul; 104(1):129-37. PubMed ID: 23670791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioconversion of ginsenosides Rb(1), Rb(2), Rc and Rd by novel β-glucosidase hydrolyzing outer 3-O glycoside from Sphingomonas sp. 2F2: cloning, expression, and enzyme characterization.
    Wang L; Liu QM; Sung BH; An DS; Lee HG; Kim SG; Kim SC; Lee ST; Im WT
    J Biotechnol; 2011 Nov; 156(2):125-33. PubMed ID: 21906640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic transformation of the major ginsenoside Rb2 to minor compound Y and compound K by a ginsenoside-hydrolyzing β-glycosidase from Microbacterium esteraromaticum.
    Quan LH; Jin Y; Wang C; Min JW; Kim YJ; Yang DC
    J Ind Microbiol Biotechnol; 2012 Oct; 39(10):1557-62. PubMed ID: 22717707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotransformation of ginsenoside Rb1 to Gyp-XVII and minor ginsenoside Rg3 by endophytic bacterium Flavobacterium sp. GE 32 isolated from Panax ginseng.
    Fu Y
    Lett Appl Microbiol; 2019 Feb; 68(2):134-141. PubMed ID: 30362617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.