These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 20376823)

  • 21. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles.
    Pan X; Fan Z; Chen W; Ding Y; Luo H; Bao X
    Nat Mater; 2007 Jul; 6(7):507-11. PubMed ID: 17515914
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relevant synthesis parameters for the sequential catalytic growth of carbon nanotubes.
    Jourdain V; Paillet M; Almairac R; Loiseau A; Bernier P
    J Phys Chem B; 2005 Feb; 109(4):1380-6. PubMed ID: 16851106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles.
    Rodríguez-Manzo JA; Terrones M; Terrones H; Kroto HW; Sun L; Banhart F
    Nat Nanotechnol; 2007 May; 2(5):307-11. PubMed ID: 18654289
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of ultrasonic power on the structure of activated carbon and the activities of Ru/AC catalyst.
    Yu F; Ji J; Xu Z; Liu H
    Ultrasonics; 2006 Dec; 44 Suppl 1():e389-92. PubMed ID: 16782146
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel in situ fabrication of chestnut-like carbon nanotube spheres from polypropylene and nickel formate.
    Chen X; He J; Yan C; Tang H
    J Phys Chem B; 2006 Nov; 110(43):21684-9. PubMed ID: 17064126
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced catalytic activity of sub-nanometer titania clusters confined inside double-wall carbon nanotubes.
    Zhang H; Pan X; Liu JJ; Qian W; Wei F; Huang Y; Bao X
    ChemSusChem; 2011 Jul; 4(7):975-80. PubMed ID: 21365773
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced visible-light activity of titania via confinement inside carbon nanotubes.
    Chen W; Fan Z; Zhang B; Ma G; Takanabe K; Zhang X; Lai Z
    J Am Chem Soc; 2011 Sep; 133(38):14896-9. PubMed ID: 21894970
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of Pt-Ru@PThB catalyst by gamma-irradiation and NaBH(4) as reducing agent.
    Ryu JH; Jung SH; Sim KS; Choi SH
    Appl Radiat Isot; 2009; 67(7-8):1449-53. PubMed ID: 19307126
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Decorating carbon nanotubes with nanoparticles using a facile redox displacement reaction and an evaluation of synergistic hydrogen storage performance.
    Chang JK; Chen CY; Tsai WT
    Nanotechnology; 2009 Dec; 20(49):495603. PubMed ID: 19893152
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pt-Ru supported on double-walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells.
    Li W; Wang X; Chen Z; Waje M; Yan Y
    J Phys Chem B; 2006 Aug; 110(31):15353-8. PubMed ID: 16884255
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis of length-controlled aerosol carbon nanotubes and their dispersion stability in aqueous solution.
    Moon YK; Lee J; Lee JK; Kim TK; Kim SH
    Langmuir; 2009 Feb; 25(3):1739-43. PubMed ID: 19132930
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Substrate-mediated enhanced activity of Ru nanoparticles in catalytic hydrogenation of benzene.
    Liu X; Meng C; Han Y
    Nanoscale; 2012 Apr; 4(7):2288-95. PubMed ID: 22392351
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Particle size dependent adsorption and reaction kinetics on reduced and partially oxidized Pd nanoparticles.
    Schalow T; Brandt B; Starr DE; Laurin M; Shaikhutdinov SK; Schauermann S; Libuda J; Freund HJ
    Phys Chem Chem Phys; 2007 Mar; 9(11):1347-61. PubMed ID: 17347708
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of PtRu nanoparticles from the hydrosilylation reaction and application as catalyst for direct methanol fuel cell.
    Huang J; Liu Z; He C; Gan LM
    J Phys Chem B; 2005 Sep; 109(35):16644-9. PubMed ID: 16853117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PtRu/carbon nanotube nanocomposite synthesized in supercritical fluid: a novel electrocatalyst for direct methanol fuel cells.
    Lin Y; Cui X; Yen CH; Wai CM
    Langmuir; 2005 Nov; 21(24):11474-9. PubMed ID: 16285828
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A general route to prepare one- and three-dimensional carbon nanotube/metal nanoparticle composite nanostructures.
    Hu X; Wang T; Wang L; Guo S; Dong S
    Langmuir; 2007 May; 23(11):6352-7. PubMed ID: 17408292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The importance of tunneling in the first hydrogenation step in ammonia synthesis over a Ru(0001) surface.
    Tautermann CS; Clary DC
    J Chem Phys; 2005 Apr; 122(13):134702. PubMed ID: 15847484
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation and characterization of ruthenium/carbon aerogel nanocomposites via a supercritical fluid route.
    Zhang Y; Kang D; Aindow M; Erkey C
    J Phys Chem B; 2005 Feb; 109(7):2617-24. PubMed ID: 16851266
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlled synthesis, characterization, and catalytic properties of Mn(2)O(3) and Mn(3)O(4) nanoparticles supported on mesoporous silica SBA-15.
    Han YF; Chen F; Zhong Z; Ramesh K; Chen L; Widjaja E
    J Phys Chem B; 2006 Dec; 110(48):24450-6. PubMed ID: 17134200
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fe/Co alloys for the catalytic chemical vapor deposition synthesis of single- and double-walled carbon nanotubes (CNTs). 1. The CNT-Fe/Co-MgO system.
    Coquay P; Peigney A; De Grave E; Flahaut E; Vandenberghe RE; Laurent C
    J Phys Chem B; 2005 Sep; 109(38):17813-24. PubMed ID: 16853284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.