These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 20376838)
1. Development of electrospun three-arm star poly(ε-caprolactone) meshes for tissue engineering applications. Puppi D; Detta N; Piras AM; Chiellini F; Clarke DA; Reilly GC; Chiellini E Macromol Biosci; 2010 Aug; 10(8):887-97. PubMed ID: 20376838 [TBL] [Abstract][Full Text] [Related]
2. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds. Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219 [TBL] [Abstract][Full Text] [Related]
3. Electrospun nanofiber meshes with tailored architectures and patterns as potential tissue-engineering scaffolds. Wang Y; Wang G; Chen L; Li H; Yin T; Wang B; Lee JC; Yu Q Biofabrication; 2009 Mar; 1(1):015001. PubMed ID: 20811096 [TBL] [Abstract][Full Text] [Related]
4. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration. Patlolla A; Collins G; Arinzeh TL Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769 [TBL] [Abstract][Full Text] [Related]
5. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(epsilon-caprolactone) blends for tissue engineering applications in the form of hollow fibers. Chiono V; Ciardelli G; Vozzi G; Sotgiu MG; Vinci B; Domenici C; Giusti P J Biomed Mater Res A; 2008 Jun; 85(4):938-53. PubMed ID: 17896770 [TBL] [Abstract][Full Text] [Related]
6. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Ghasemi-Mobarakeh L; Prabhakaran MP; Morshed M; Nasr-Esfahani MH; Ramakrishna S Biomaterials; 2008 Dec; 29(34):4532-9. PubMed ID: 18757094 [TBL] [Abstract][Full Text] [Related]
7. Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering. Puppi D; Mota C; Gazzarri M; Dinucci D; Gloria A; Myrzabekova M; Ambrosio L; Chiellini F Biomed Microdevices; 2012 Dec; 14(6):1115-27. PubMed ID: 22767245 [TBL] [Abstract][Full Text] [Related]
8. Synthesis, characterizations and biocompatibility of novel biodegradable star block copolymers based on poly[(R)-3-hydroxybutyrate] and poly(epsilon-caprolactone). Wu L; Wang L; Wang X; Xu K Acta Biomater; 2010 Mar; 6(3):1079-89. PubMed ID: 19671452 [TBL] [Abstract][Full Text] [Related]
9. Production and characterization of chitosan fibers and 3-D fiber mesh scaffolds for tissue engineering applications. Tuzlakoglu K; Alves CM; Mano JF; Reis RL Macromol Biosci; 2004 Aug; 4(8):811-9. PubMed ID: 15468275 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of highly porous scaffolds for tissue engineering based on star-shaped functional poly(ε-caprolactone). Theiler S; Mela P; Diamantouros SE; Jockenhoevel S; Keul H; Möller M Biotechnol Bioeng; 2011 Mar; 108(3):694-703. PubMed ID: 21246513 [TBL] [Abstract][Full Text] [Related]
11. Characterization of poly(epsilon-caprolactone)/polyfumarate blends as scaffolds for bone tissue engineering. Fernandez JM; Molinuevo MS; Cortizo AM; McCarthy AD; Cortizo MS J Biomater Sci Polym Ed; 2010; 21(10):1297-312. PubMed ID: 20534186 [TBL] [Abstract][Full Text] [Related]
12. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses. Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580 [TBL] [Abstract][Full Text] [Related]
14. Mechanical testing of electrospun PCL fibers. Croisier F; Duwez AS; Jérôme C; Léonard AF; van der Werf KO; Dijkstra PJ; Bennink ML Acta Biomater; 2012 Jan; 8(1):218-24. PubMed ID: 21878398 [TBL] [Abstract][Full Text] [Related]
15. Electrospun gelatin/poly(L-lactide-co-epsilon-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds. Jeong SI; Lee AY; Lee YM; Shin H J Biomater Sci Polym Ed; 2008; 19(3):339-57. PubMed ID: 18325235 [TBL] [Abstract][Full Text] [Related]
16. Aligned poly(L-lactic-co-e-caprolactone) electrospun microfibers and knitted structure: a novel composite scaffold for ligament tissue engineering. Vaquette C; Kahn C; Frochot C; Nouvel C; Six JL; De Isla N; Luo LH; Cooper-White J; Rahouadj R; Wang X J Biomed Mater Res A; 2010 Sep; 94(4):1270-82. PubMed ID: 20694995 [TBL] [Abstract][Full Text] [Related]
17. Surface-modified electrospun poly(epsilon-caprolactone) scaffold with improved optical transparency and bioactivity for damaged ocular surface reconstruction. Sharma S; Gupta D; Mohanty S; Jassal M; Agrawal AK; Tandon R Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):899-907. PubMed ID: 24425860 [TBL] [Abstract][Full Text] [Related]
18. The effect of gelatin incorporation into electrospun poly(L-lactide-co-epsilon-caprolactone) fibers on mechanical properties and cytocompatibility. Lee J; Tae G; Kim YH; Park IS; Kim SH; Kim SH Biomaterials; 2008 Apr; 29(12):1872-9. PubMed ID: 18234330 [TBL] [Abstract][Full Text] [Related]
19. Blends of poly-(epsilon-caprolactone) and polysaccharides in tissue engineering applications. Ciardelli G; Chiono V; Vozzi G; Pracella M; Ahluwalia A; Barbani N; Cristallini C; Giusti P Biomacromolecules; 2005; 6(4):1961-76. PubMed ID: 16004434 [TBL] [Abstract][Full Text] [Related]
20. Gravity spun polycaprolactone fibres for soft tissue engineering: interaction with fibroblasts and myoblasts in cell culture. Williamson MR; Adams EF; Coombes AG Biomaterials; 2006 Mar; 27(7):1019-26. PubMed ID: 16054685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]