BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20377207)

  • 1. Trema and parasponia hemoglobins reveal convergent evolution of oxygen transport in plants.
    Sturms R; Kakar S; Trent J; Hargrove MS
    Biochemistry; 2010 May; 49(19):4085-93. PubMed ID: 20377207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structures of Parasponia and Trema hemoglobins: differential heme coordination is linked to quaternary structure.
    Kakar S; Sturms R; Tiffany A; Nix JC; DiSpirito AA; Hargrove MS
    Biochemistry; 2011 May; 50(20):4273-80. PubMed ID: 21491905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review: correlations between oxygen affinity and sequence classifications of plant hemoglobins.
    Smagghe BJ; Hoy JA; Percifield R; Kundu S; Hargrove MS; Sarath G; Hilbert JL; Watts RA; Dennis ES; Peacock WJ; Dewilde S; Moens L; Blouin GC; Olson JS; Appleby CA
    Biopolymers; 2009 Dec; 91(12):1083-96. PubMed ID: 19441024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant hemoglobins: a molecular fossil record for the evolution of oxygen transport.
    Hoy JA; Robinson H; Trent JT; Kakar S; Smagghe BJ; Hargrove MS
    J Mol Biol; 2007 Aug; 371(1):168-79. PubMed ID: 17560601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Truncated hemoglobins in actinorhizal nodules of Datisca glomerata.
    Pawlowski K; Jacobsen KR; Alloisio N; Ford Denison R; Klein M; Tjepkema JD; Winzer T; Sirrenberg A; Guan C; Berry AM
    Plant Biol (Stuttg); 2007 Nov; 9(6):776-85. PubMed ID: 17682965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant hemoglobins: important players at the crossroads between oxygen and nitric oxide.
    Gupta KJ; Hebelstrup KH; Mur LA; Igamberdiev AU
    FEBS Lett; 2011 Dec; 585(24):3843-9. PubMed ID: 22036787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and characterization of a caesalpinoid (Chamaecrista fasciculata) hemoglobin: the structural transition from a nonsymbiotic hemoglobin to a leghemoglobin.
    Gopalasubramaniam SK; Kovacs F; Violante-Mota F; Twigg P; Arredondo-Peter R; Sarath G
    Proteins; 2008 Jul; 72(1):252-60. PubMed ID: 18214970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the protein matrix on intramolecular histidine ligation in ferric and ferrous hexacoordinate hemoglobins.
    Halder P; Trent JT; Hargrove MS
    Proteins; 2007 Jan; 66(1):172-82. PubMed ID: 17044063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functioning haemoglobin genes in non-nodulating plants.
    Bogusz D; Appleby CA; Landsmann J; Dennis ES; Trinick MJ; Peacock WJ
    Nature; 1988 Jan; 331(6152):178-80. PubMed ID: 2448639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of phenylalanine B10 in plant nonsymbiotic hemoglobins.
    Smagghe BJ; Kundu S; Hoy JA; Halder P; Weiland TR; Savage A; Venugopal A; Goodman M; Premer S; Hargrove MS
    Biochemistry; 2006 Aug; 45(32):9735-45. PubMed ID: 16893175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slow ligand binding kinetics dominate ferrous hexacoordinate hemoglobin reactivities and reveal differences between plants and other species.
    Smagghe BJ; Sarath G; Ross E; Hilbert JL; Hargrove MS
    Biochemistry; 2006 Jan; 45(2):561-70. PubMed ID: 16401085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant hemoglobins: what we know six decades after their discovery.
    Garrocho-Villegas V; Gopalasubramaniam SK; Arredondo-Peter R
    Gene; 2007 Aug; 398(1-2):78-85. PubMed ID: 17540516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rare non-canonical splice site in Trema orientalis SYMRK does not affect its dual symbiotic functioning in endomycorrhiza and rhizobium nodulation.
    Alhusayni S; Roswanjaya YP; Rutten L; Huisman R; Bertram S; Sharma T; Schon M; Kohlen W; Klein J; Geurts R
    BMC Plant Biol; 2023 Nov; 23(1):587. PubMed ID: 37996841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional properties of class 1 plant hemoglobins.
    Igamberdiev AU; Bykova NV; Hill RD
    IUBMB Life; 2011 Mar; 63(3):146-52. PubMed ID: 21445844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning and characterization of a moss (Ceratodon purpureus) nonsymbiotic hemoglobin provides insight into the early evolution of plant nonsymbiotic hemoglobins.
    Garrocho-Villegas V; Arredondo-Peter R
    Mol Biol Evol; 2008 Jul; 25(7):1482-7. PubMed ID: 18420592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A class 1 hemoglobin gene from Alnus firma functions in symbiotic and nonsymbiotic tissues to detoxify nitric oxide.
    Sasakura F; Uchiumi T; Shimoda Y; Suzuki A; Takenouchi K; Higashi S; Abe M
    Mol Plant Microbe Interact; 2006 Apr; 19(4):441-50. PubMed ID: 16610747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemoglobin in a nonleguminous plant, parasponia: possible genetic origin and function in nitrogen fixation.
    Appleby CA; Tjepkema JD; Trinick MJ
    Science; 1983 May; 220(4600):951-3. PubMed ID: 17816020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-function relationships in unusual nonvertebrate globins.
    Shikama K; Matsuoka A
    Crit Rev Biochem Mol Biol; 2004; 39(4):217-59. PubMed ID: 15596552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of distal histidine coordination equilibrium and kinetics in hexacoordinate hemoglobins.
    Smagghe BJ; Halder P; Hargrove MS
    Methods Enzymol; 2008; 436():359-78. PubMed ID: 18237643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct patterns of symbiosis-related gene expression in actinorhizal nodules from different plant families.
    Pawlowski K; Swensen S; Guan C; Hadri AE; Berry AM; Bisseling T
    Mol Plant Microbe Interact; 2003 Sep; 16(9):796-807. PubMed ID: 12971603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.