These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 20377226)
1. Quantification of the 2-deoxyribonolactone and nucleoside 5'-aldehyde products of 2-deoxyribose oxidation in DNA and cells by isotope-dilution gas chromatography mass spectrometry: differential effects of gamma-radiation and Fe2+-EDTA. Chan W; Chen B; Wang L; Taghizadeh K; Demott MS; Dedon PC J Am Chem Soc; 2010 May; 132(17):6145-53. PubMed ID: 20377226 [TBL] [Abstract][Full Text] [Related]
2. 5'-(2-phosphoryl-1,4-dioxobutane) as a product of 5'-oxidation of deoxyribose in DNA: elimination as trans-1,4-dioxo-2-butene and approaches to analysis. Chen B; Bohnert T; Zhou X; Dedon PC Chem Res Toxicol; 2004 Nov; 17(11):1406-13. PubMed ID: 15540938 [TBL] [Abstract][Full Text] [Related]
3. GC/MS methods to quantify the 2-deoxypentos-4-ulose and 3'-phosphoglycolate pathways of 4' oxidation of 2-deoxyribose in DNA: application to DNA damage produced by gamma radiation and bleomycin. Chen B; Zhou X; Taghizadeh K; Chen J; Stubbe J; Dedon PC Chem Res Toxicol; 2007 Nov; 20(11):1701-8. PubMed ID: 17944541 [TBL] [Abstract][Full Text] [Related]
4. Analysis of 3'-phosphoglycolaldehyde residues in oxidized DNA by gas chromatography/negative chemical ionization/mass spectrometry. Collins C; Awada MM; Zhou X; Dedon PC Chem Res Toxicol; 2003 Dec; 16(12):1560-6. PubMed ID: 14680370 [TBL] [Abstract][Full Text] [Related]
5. Differential oxidation of deoxyribose in DNA by gamma and alpha-particle radiation. Collins C; Zhou X; Wang R; Barth MC; Jiang T; Coderre JA; Dedon PC Radiat Res; 2005 Jun; 163(6):654-62. PubMed ID: 15913397 [TBL] [Abstract][Full Text] [Related]
6. Thiols alter the partitioning of calicheamicin-induced deoxyribose 4'-oxidation reactions in the absence of DNA radical repair. Lopez-Larraza DM; Moore K; Dedon PC Chem Res Toxicol; 2001 May; 14(5):528-35. PubMed ID: 11368551 [TBL] [Abstract][Full Text] [Related]
7. DNA sequence context as a determinant of the quantity and chemistry of guanine oxidation produced by hydroxyl radicals and one-electron oxidants. Margolin Y; Shafirovich V; Geacintov NE; DeMott MS; Dedon PC J Biol Chem; 2008 Dec; 283(51):35569-78. PubMed ID: 18948263 [TBL] [Abstract][Full Text] [Related]
8. Identification of the C4'-oxidized abasic site as the most abundant 2-deoxyribose lesion in radiation-damaged DNA using a novel HPLC-based approach. Roginskaya M; Mohseni R; Moore TJ; Bernhard WA; Razskazovskiy Y Radiat Res; 2014 Feb; 181(2):131-7. PubMed ID: 24410455 [TBL] [Abstract][Full Text] [Related]
9. Quantification of DNA strand breaks and abasic sites by oxime derivatization and accelerator mass spectrometry: application to gamma-radiation and peroxynitrite. Zhou X; Liberman RG; Skipper PL; Margolin Y; Tannenbaum SR; Dedon PC Anal Biochem; 2005 Aug; 343(1):84-92. PubMed ID: 15964542 [TBL] [Abstract][Full Text] [Related]
10. Half-life and DNA strand scission products of 2-deoxyribonolactone oxidative DNA damage lesions. Zheng Y; Sheppard TL Chem Res Toxicol; 2004 Feb; 17(2):197-207. PubMed ID: 14967007 [TBL] [Abstract][Full Text] [Related]
11. Association with Polyamines and Polypeptides Increases the Relative Yield of 2-Deoxyribonolactone Lesions in Radiation-Damaged DNA. Razskazovskiy Y; Tegomoh M; Roginskaya M Radiat Res; 2019 Sep; 192(3):324-330. PubMed ID: 31298612 [TBL] [Abstract][Full Text] [Related]
12. Selective radiation-induced generation of 2-deoxyribonolactone lesions in DNA mediated by aromatic iodonium derivatives. Roginskaya M; Razskazovskiy Y Radiat Res; 2009 Mar; 171(3):342-8. PubMed ID: 19267561 [TBL] [Abstract][Full Text] [Related]
13. Site-specific generation of deoxyribonolactone lesions in DNA oligonucleotides. Lenox HJ; McCoy CP; Sheppard TL Org Lett; 2001 Jul; 3(15):2415-8. PubMed ID: 11463330 [TBL] [Abstract][Full Text] [Related]
14. Hydroxyl radical production from hydrogen peroxide and enzymatically generated paraquat radicals: catalytic requirements and oxygen dependence. Winterbourn CC; Sutton HC Arch Biochem Biophys; 1984 Nov; 235(1):116-26. PubMed ID: 6093705 [TBL] [Abstract][Full Text] [Related]
15. Relatively small increases in the steady-state levels of nucleobase deamination products in DNA from human TK6 cells exposed to toxic levels of nitric oxide. Dong M; Dedon PC Chem Res Toxicol; 2006 Jan; 19(1):50-7. PubMed ID: 16411656 [TBL] [Abstract][Full Text] [Related]
16. Selective detection of 2-deoxyribonolactone in DNA. Sato K; Greenberg MM J Am Chem Soc; 2005 Mar; 127(9):2806-7. PubMed ID: 15740088 [TBL] [Abstract][Full Text] [Related]
17. Clemens von Sonntag and the early history of radiation-induced sugar damage in DNA. Dizdaroglu M Int J Radiat Biol; 2014 Jun; 90(6):446-58. PubMed ID: 24547911 [TBL] [Abstract][Full Text] [Related]
18. Formation of 1,4-dioxo-2-butene-derived adducts of 2'-deoxyadenosine and 2'-deoxycytidine in oxidized DNA. Chen B; Vu CC; Byrns MC; Dedon PC; Peterson LA Chem Res Toxicol; 2006 Aug; 19(8):982-5. PubMed ID: 16918236 [TBL] [Abstract][Full Text] [Related]
19. Factors affecting the yields of C1' and C5' oxidation products in radiation-damaged DNA: the indirect effect. Price CS; Razskazovskiy Y; Bernhard WA Radiat Res; 2010 Nov; 174(5):645-9. PubMed ID: 20954863 [TBL] [Abstract][Full Text] [Related]
20. Use of fluorescence sensors to determine that 2-deoxyribonolactone is the major alkali-labile deoxyribose lesion produced in oxidatively damaged DNA. Xue L; Greenberg MM Angew Chem Int Ed Engl; 2007; 46(4):561-4. PubMed ID: 17154191 [No Abstract] [Full Text] [Related] [Next] [New Search]