These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 20377229)

  • 1. Tuning supramolecular rigidity of peptide fibers through molecular structure.
    Pashuck ET; Cui H; Stupp SI
    J Am Chem Soc; 2010 May; 132(17):6041-6. PubMed ID: 20377229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing.
    Paramonov SE; Jun HW; Hartgerink JD
    J Am Chem Soc; 2006 Jun; 128(22):7291-8. PubMed ID: 16734483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen Bonding Stiffens Peptide Amphiphile Supramolecular Filaments by Aza-Glycine Residues.
    Godbe JM; Freeman R; Lewis JA; Sasselli IR; Sangji MH; Stupp SI
    Acta Biomater; 2021 Nov; 135():87-99. PubMed ID: 34481055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular Assembly of Peptide Amphiphiles.
    Hendricks MP; Sato K; Palmer LC; Stupp SI
    Acc Chem Res; 2017 Oct; 50(10):2440-2448. PubMed ID: 28876055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of fibronectin mimetic peptide-amphiphile nanofibers.
    Rexeisen EL; Fan W; Pangburn TO; Taribagil RR; Bates FS; Lodge TP; Tsapatsis M; Kokkoli E
    Langmuir; 2010 Feb; 26(3):1953-9. PubMed ID: 19877715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable mechanics of peptide nanofiber gels.
    Greenfield MA; Hoffman JR; de la Cruz MO; Stupp SI
    Langmuir; 2010 Mar; 26(5):3641-7. PubMed ID: 19817454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic effects on nanofiber formation of self-assembling peptide amphiphiles.
    Toksoz S; Mammadov R; Tekinay AB; Guler MO
    J Colloid Interface Sci; 2011 Apr; 356(1):131-7. PubMed ID: 21269637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mineralization of peptide amphiphile nanofibers and its effect on the differentiation of human mesenchymal stem cells.
    Sargeant TD; Aparicio C; Goldberger JE; Cui H; Stupp SI
    Acta Biomater; 2012 Jul; 8(7):2456-65. PubMed ID: 22440242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of designed BMHP1-derived self-assembling peptides for tissue engineering applications.
    Silva D; Natalello A; Sanii B; Vasita R; Saracino G; Zuckermann RN; Doglia SM; Gelain F
    Nanoscale; 2013 Jan; 5(2):704-18. PubMed ID: 23223865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular self-assembly into one-dimensional nanostructures.
    Palmer LC; Stupp SI
    Acc Chem Res; 2008 Dec; 41(12):1674-84. PubMed ID: 18754628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Branched peptides integrate into self-assembled nanostructures and enhance biomechanics of peptidic hydrogels.
    Pugliese R; Fontana F; Marchini A; Gelain F
    Acta Biomater; 2018 Jan; 66():258-271. PubMed ID: 29128535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction.
    Niece KL; Hartgerink JD; Donners JJ; Stupp SI
    J Am Chem Soc; 2003 Jun; 125(24):7146-7. PubMed ID: 12797766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular Tuning of H
    Qian Y; Kaur K; Foster JC; Matson JB
    Biomacromolecules; 2019 Feb; 20(2):1077-1086. PubMed ID: 30676716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A tenascin-C mimetic peptide amphiphile nanofiber gel promotes neurite outgrowth and cell migration of neurosphere-derived cells.
    Berns EJ; Álvarez Z; Goldberger JE; Boekhoven J; Kessler JA; Kuhn HG; Stupp SI
    Acta Biomater; 2016 Jun; 37():50-8. PubMed ID: 27063496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide amphiphile nanofibers with conjugated polydiacetylene backbones in their core.
    Hsu L; Cvetanovich GL; Stupp SI
    J Am Chem Soc; 2008 Mar; 130(12):3892-9. PubMed ID: 18314978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmable Assembly of Peptide Amphiphile via Noncovalent-to-Covalent Bond Conversion.
    Sato K; Ji W; Palmer LC; Weber B; Barz M; Stupp SI
    J Am Chem Soc; 2017 Jul; 139(26):8995-9000. PubMed ID: 28639790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of multidomain peptides: balancing molecular frustration controls conformation and nanostructure.
    Dong H; Paramonov SE; Aulisa L; Bakota EL; Hartgerink JD
    J Am Chem Soc; 2007 Oct; 129(41):12468-72. PubMed ID: 17894489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimuli-Responsive, Pentapeptide, Nanofiber Hydrogel for Tissue Engineering.
    Tang JD; Mura C; Lampe KJ
    J Am Chem Soc; 2019 Mar; 141(12):4886-4899. PubMed ID: 30830776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembling multidomain peptide fibers with aromatic cores.
    Bakota EL; Sensoy O; Ozgur B; Sayar M; Hartgerink JD
    Biomacromolecules; 2013 May; 14(5):1370-8. PubMed ID: 23480446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of peptide-amphiphile forming helical nanofibers and in situ template synthesis of uniform mesoporous single wall silica nanotubes.
    Ahmed S; Mondal JH; Behera N; Das D
    Langmuir; 2013 Nov; 29(46):14274-83. PubMed ID: 24128085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.