BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 20377361)

  • 1. Minimally required heat doses for various tumour sizes in induction heating cancer therapy determined by computer simulation using experimental data.
    Yamada K; Oda T; Hashimoto S; Enomoto T; Ohkohchi N; Ikeda H; Yanagihara H; Kishimoto M; Kita E; Tasaki A; Satake M; Ikehata Y; Nagae H; Nagano I; Takagi T; Kanamori T
    Int J Hyperthermia; 2010; 26(5):465-74. PubMed ID: 20377361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localised heating of tumours utilising injectable magnetic nanoparticles for hyperthermia cancer therapy.
    Tseng HY; Lee GB; Lee CY; Shih YH; Lin XZ
    IET Nanobiotechnol; 2009 Jun; 3(2):46-54. PubMed ID: 19485552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer hyperthermia using magnetic nanoparticles.
    Kobayashi T
    Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arrhenius relationships from the molecule and cell to the clinic.
    Dewey WC
    Int J Hyperthermia; 2009 Feb; 25(1):3-20. PubMed ID: 19219695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local moderate magnetically induced hyperthermia using an implant formed in situ in a mouse tumor model.
    Le Renard PE; Buchegger F; Petri-Fink A; Bosman F; Rüfenacht D; Hofmann H; Doelker E; Jordan O
    Int J Hyperthermia; 2009 May; 25(3):229-39. PubMed ID: 19437238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.
    Li FR; Yan WH; Guo YH; Qi H; Zhou HX
    Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles.
    Wang L; Dong J; Ouyang W; Wang X; Tang J
    Oncol Rep; 2012 Mar; 27(3):719-26. PubMed ID: 22134718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoclusters of crystallographically aligned nanoparticles for magnetic thermotherapy: aqueous ferrofluid, agarose phantoms and ex vivo melanoma tumour assessment.
    Coral DF; Soto PA; Blank V; Veiga A; Spinelli E; Gonzalez S; Saracco GP; Bab MA; Muraca D; Setton-Avruj PC; Roig A; Roguin L; Fernández van Raap MB
    Nanoscale; 2018 Dec; 10(45):21262-21274. PubMed ID: 30418464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle distribution and temperature elevations in prostatic tumours in mice during magnetic nanoparticle hyperthermia.
    Attaluri A; Ma R; Qiu Y; Li W; Zhu L
    Int J Hyperthermia; 2011; 27(5):491-502. PubMed ID: 21756046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mean-field and linear regime approach to magnetic hyperthermia of core-shell nanoparticles: can tiny nanostructures fight cancer?
    Carrião MS; Bakuzis AF
    Nanoscale; 2016 Apr; 8(15):8363-77. PubMed ID: 27046437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer.
    Kawashita M; Tanaka M; Kokubo T; Inoue Y; Yao T; Hamada S; Shinjo T
    Biomaterials; 2005 May; 26(15):2231-8. PubMed ID: 15585224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroCT image based simulation to design heating protocols in magnetic nanoparticle hyperthermia for cancer treatment.
    LeBrun A; Ma R; Zhu L
    J Therm Biol; 2016 Dec; 62(Pt B):129-137. PubMed ID: 27888926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat shock protein expression and temperature distribution in prostate tumours treated with laser irradiation and nanoshells.
    Rylander MN; Stafford RJ; Hazle J; Whitney J; Diller KR
    Int J Hyperthermia; 2011; 27(8):791-801. PubMed ID: 22098363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel magnetic heating probe for multimodal cancer treatment.
    Kan-Dapaah K; Rahbar N; Soboyejo W
    Med Phys; 2015 May; 42(5):2203-11. PubMed ID: 25979014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroCT image-generated tumour geometry and SAR distribution for tumour temperature elevation simulations in magnetic nanoparticle hyperthermia.
    Lebrun A; Manuchehrabadi N; Attaluri A; Wang F; Ma R; Zhu L
    Int J Hyperthermia; 2013 Dec; 29(8):730-8. PubMed ID: 24074039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal heat transport induced by magnetic nanoparticle delivery in vascularised tumours.
    Al Sariri T; Simitev RD; Penta R
    J Theor Biol; 2023 Mar; 561():111372. PubMed ID: 36496186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatibility and therapeutic evaluation of magnetic liposomes designed for self-controlled cancer hyperthermia and chemotherapy.
    Gogoi M; Jaiswal MK; Sarma HD; Bahadur D; Banerjee R
    Integr Biol (Camb); 2017 Jun; 9(6):555-565. PubMed ID: 28513646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer.
    Ivkov R; DeNardo SJ; Daum W; Foreman AR; Goldstein RC; Nemkov VS; DeNardo GL
    Clin Cancer Res; 2005 Oct; 11(19 Pt 2):7093s-7103s. PubMed ID: 16203808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifunctional magnetic nanoparticles for synergistic enhancement of cancer treatment by combinatorial radio frequency thermolysis and drug delivery.
    Xu Y; Karmakar A; Heberlein WE; Mustafa T; Biris AR; Biris AS
    Adv Healthc Mater; 2012 Jul; 1(4):493-501. PubMed ID: 23184783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.