These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 20377442)

  • 41. Automated protein identification by tandem mass spectrometry: issues and strategies.
    Hernandez P; Müller M; Appel RD
    Mass Spectrom Rev; 2006; 25(2):235-54. PubMed ID: 16284939
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improving peptide identification using an empirical peptide retention time database.
    Sun W; Zhang L; Yang R; Shao C; Zhang Z; Gao Y
    Rapid Commun Mass Spectrom; 2009 Jan; 23(1):109-18. PubMed ID: 19065623
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Algorithm for peptide sequencing by tandem mass spectrometry based on better preprocessing and anti-symmetric computational model.
    Ning K; Leong HW
    Comput Syst Bioinformatics Conf; 2007; 6():19-30. PubMed ID: 17951809
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Shotgun protein sequencing: assembly of peptide tandem mass spectra from mixtures of modified proteins.
    Bandeira N; Clauser KR; Pevzner PA
    Mol Cell Proteomics; 2007 Jul; 6(7):1123-34. PubMed ID: 17446555
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of trichloroethanol visualized proteins from two-dimensional polyacrylamide gels by mass spectrometry.
    Ladner CL; Edwards RA; Schriemer DC; Turner RJ
    Anal Chem; 2006 Apr; 78(7):2388-96. PubMed ID: 16579625
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of iTRAQ labeling on the relative abundance of peptide fragment ions produced by MALDI-MS/MS.
    Gandhi T; Puri P; Fusetti F; Breitling R; Poolman B; Permentier HP
    J Proteome Res; 2012 Aug; 11(8):4044-51. PubMed ID: 22770492
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mass spectrometry and the age of the proteome.
    Yates JR
    J Mass Spectrom; 1998 Jan; 33(1):1-19. PubMed ID: 9449829
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced peptide mass fingerprinting through high mass accuracy: Exclusion of non-peptide signals based on residual mass.
    Dodds ED; An HJ; Hagerman PJ; Lebrilla CB
    J Proteome Res; 2006 May; 5(5):1195-203. PubMed ID: 16674109
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein identification by peptide mass fingerprinting and peptide sequence tagging with alternating scans of nano-liquid chromatography/infrared multiphoton dissociation Fourier transform ion cyclotron resonance mass spectrometry.
    Kosaka T; Yoneyama-Takazawa T; Kubota K; Matsuoka T; Sato I; Sasaki T; Tanaka Y
    J Mass Spectrom; 2003 Dec; 38(12):1281-7. PubMed ID: 14696210
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Detection and identification of heme c-modified peptides by histidine affinity chromatography, high-performance liquid chromatography-mass spectrometry, and database searching.
    Merkley ED; Anderson BJ; Park J; Belchik SM; Shi L; Monroe ME; Smith RD; Lipton MS
    J Proteome Res; 2012 Dec; 11(12):6147-58. PubMed ID: 23082897
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Increasing peptide identification in tandem mass spectrometry through automatic function switching optimization.
    Carrillo B; Lekpor K; Yanofsky C; Bell AW; Boismenu D; Kearney RE
    J Am Soc Mass Spectrom; 2005 Nov; 16(11):1818-26. PubMed ID: 16198121
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Using GFS to identify encoding genomic loci from protein mass spectral data.
    Holmes MR; Giddings MC
    Curr Protoc Bioinformatics; 2008 Mar; Chapter 13():Unit 13.9. PubMed ID: 18428684
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-accuracy peptide mass fingerprinting using peak intensity data with machine learning.
    Yang D; Ramkissoon K; Hamlett E; Giddings MC
    J Proteome Res; 2008 Jan; 7(1):62-9. PubMed ID: 17914788
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification and characterization of microbial proteins using peptide mass fingerprinting strategies.
    Arthur JW
    Methods Mol Med; 2008; 141():257-70. PubMed ID: 18453094
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Better cutters for protein mass fingerprinting: preliminary findings.
    Wise MJ; Littlejohn T; Humphery-Smith I
    Proc Int Conf Intell Syst Mol Biol; 1997; 5():340-3. PubMed ID: 9322059
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protein Inference from the Integration of Tandem MS Data and Interactome Networks.
    Zhong J; Wang J; Ding X; Zhang Z; Li M; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(6):1399-1409. PubMed ID: 28113634
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Species Identification of Bovine, Ovine and Porcine Type 1 Collagen; Comparing Peptide Mass Fingerprinting and LC-Based Proteomics Methods.
    Buckley M
    Int J Mol Sci; 2016 Mar; 17(4):445. PubMed ID: 27023524
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Experimental determination of translational starts using peptide mass mapping and tandem mass spectrometry within the proteome of Mycobacterium tuberculosis.
    Rison SCG; Mattow J; Jungblut PR; Stoker NG
    Microbiology (Reading); 2007 Feb; 153(Pt 2):521-528. PubMed ID: 17259624
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Calibration of mass spectrometric peptide mass fingerprint data without specific external or internal calibrants.
    Wolski WE; Lalowski M; Jungblut P; Reinert K
    BMC Bioinformatics; 2005 Aug; 6():203. PubMed ID: 16102175
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improved short peptide identification using HILIC-MS/MS: retention time prediction model based on the impact of amino acid position in the peptide sequence.
    Le Maux S; Nongonierma AB; FitzGerald RJ
    Food Chem; 2015 Apr; 173():847-54. PubMed ID: 25466098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.