These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 20377453)
1. COE: a general approach for efficient genome-wide two-locus epistasis test in disease association study. Zhang X; Pan F; Xie Y; Zou F; Wang W J Comput Biol; 2010 Mar; 17(3):401-15. PubMed ID: 20377453 [TBL] [Abstract][Full Text] [Related]
2. Gene-Gene Interactions Detection Using a Two-stage Model. Wang Z; Sul JH; Snir S; Lozano JA; Eskin E J Comput Biol; 2015 Jun; 22(6):563-76. PubMed ID: 25871811 [TBL] [Abstract][Full Text] [Related]
3. Predictive rule inference for epistatic interaction detection in genome-wide association studies. Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W Bioinformatics; 2010 Jan; 26(1):30-7. PubMed ID: 19880365 [TBL] [Abstract][Full Text] [Related]
4. Searching Genome-Wide Multi-Locus Associations for Multiple Diseases Based on Bayesian Inference. Guo X; Zhang J; Cai Z; Du DZ; Pan Y IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(3):600-610. PubMed ID: 26887006 [TBL] [Abstract][Full Text] [Related]
5. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies. Yang C; He Z; Wan X; Yang Q; Xue H; Yu W Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029 [TBL] [Abstract][Full Text] [Related]
6. Detecting two-locus associations allowing for interactions in genome-wide association studies. Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W Bioinformatics; 2010 Oct; 26(20):2517-25. PubMed ID: 20736343 [TBL] [Abstract][Full Text] [Related]
7. Detecting purely epistatic multi-locus interactions by an omnibus permutation test on ensembles of two-locus analyses. Wongseree W; Assawamakin A; Piroonratana T; Sinsomros S; Limwongse C; Chaiyaratana N BMC Bioinformatics; 2009 Sep; 10():294. PubMed ID: 19761607 [TBL] [Abstract][Full Text] [Related]
8. Prioritizing tests of epistasis through hierarchical representation of genomic redundancies. Cowman T; Koyutürk M Nucleic Acids Res; 2017 Aug; 45(14):e131. PubMed ID: 28605458 [TBL] [Abstract][Full Text] [Related]
9. FastChi: an efficient algorithm for analyzing gene-gene interactions. Zhang X; Zou F; Wang W Pac Symp Biocomput; 2009; ():528-39. PubMed ID: 19209728 [TBL] [Abstract][Full Text] [Related]
10. Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data. Liu Y; Maxwell S; Feng T; Zhu X; Elston RC; Koyutürk M; Chance MR BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S15. PubMed ID: 23281810 [TBL] [Abstract][Full Text] [Related]
11. Exploring the Genetic Patterns of Complex Diseases via the Integrative Genome-Wide Approach. Teng B; Yang C; Liu J; Cai Z; Wan X IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(3):557-64. PubMed ID: 27295639 [TBL] [Abstract][Full Text] [Related]
12. A Tool for Detecting Complementary Single Nucleotide Polymorphism Pairs in Genome-Wide Association Studies for Epistasis Testing. Caylak G; Tastan O; Cicek AE J Comput Biol; 2021 Apr; 28(4):378-380. PubMed ID: 33325775 [No Abstract] [Full Text] [Related]
13. GWIS--model-free, fast and exhaustive search for epistatic interactions in case-control GWAS. Goudey B; Rawlinson D; Wang Q; Shi F; Ferra H; Campbell RM; Stern L; Inouye MT; Ong CS; Kowalczyk A BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S10. PubMed ID: 23819779 [TBL] [Abstract][Full Text] [Related]
14. MegaSNPHunter: a learning approach to detect disease predisposition SNPs and high level interactions in genome wide association study. Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W BMC Bioinformatics; 2009 Jan; 10():13. PubMed ID: 19134182 [TBL] [Abstract][Full Text] [Related]
15. TEAM: efficient two-locus epistasis tests in human genome-wide association study. Zhang X; Huang S; Zou F; Wang W Bioinformatics; 2010 Jun; 26(12):i217-27. PubMed ID: 20529910 [TBL] [Abstract][Full Text] [Related]
16. BOOST: A fast approach to detecting gene-gene interactions in genome-wide case-control studies. Wan X; Yang C; Yang Q; Xue H; Fan X; Tang NL; Yu W Am J Hum Genet; 2010 Sep; 87(3):325-40. PubMed ID: 20817139 [TBL] [Abstract][Full Text] [Related]
17. Chaotic particle swarm optimization for detecting SNP-SNP interactions for CXCL12-related genes in breast cancer prevention. Chuang LY; Chang HW; Lin MC; Yang CH Eur J Cancer Prev; 2012 Jul; 21(4):336-42. PubMed ID: 22127289 [TBL] [Abstract][Full Text] [Related]
18. Chi8: a GPU program for detecting significant interacting SNPs with the Chi-square 8-df test. Al-jouie A; Esfandiari M; Ramakrishnan S; Roshan U BMC Res Notes; 2015 Sep; 8():436. PubMed ID: 26369336 [TBL] [Abstract][Full Text] [Related]
19. A powerful and efficient two-stage method for detecting gene-to-gene interactions in GWAS. Pecanka J; Jonker MA; ; Bochdanovits Z; Van Der Vaart AW Biostatistics; 2017 Jul; 18(3):477-494. PubMed ID: 28334077 [TBL] [Abstract][Full Text] [Related]
20. Identification of susceptibility loci for complex diseases in a case-control association study using the Genetic Analysis Workshop 14 dataset. Kerstann KF; Jacobs K; Yang XR; Bergen AW; Goldin LR; Goldstein AM BMC Genet; 2005 Dec; 6 Suppl 1(Suppl 1):S102. PubMed ID: 16451558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]