These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 20378219)

  • 41. Aluminum water treatment residuals as permeable reactive barrier sorbents to reduce phosphorus losses.
    Miller ML; Bhadha JH; O'Connor GA; Jawitz JW; Mitchell J
    Chemosphere; 2011 May; 83(7):978-83. PubMed ID: 21377185
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Drinking water treatment residuals: a review of recent uses.
    Ippolito JA; Barbarick KA; Elliott HA
    J Environ Qual; 2011; 40(1):1-12. PubMed ID: 21488487
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of pH on Metal Lability in Drinking Water Treatment Residuals.
    Wang C; Yuan N; Pei Y
    J Environ Qual; 2014 Jan; 43(1):389-97. PubMed ID: 25602573
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of aluminium-based water treatment residual for potential phosphorus removal in engineered wetlands.
    Babatunde AO; Zhao YQ; Burke AM; Morris MA; Hanrahan JP
    Environ Pollut; 2009 Oct; 157(10):2830-6. PubMed ID: 19427085
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigation on the eco-toxicity of lake sediments with the addition of drinking water treatment residuals.
    Yuan N; Wang C; Pei Y
    J Environ Sci (China); 2016 Aug; 46():5-15. PubMed ID: 27521931
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Soil acidification as a confounding factor on metal phytotoxicity in soils spiked with copper-rich mine wastes.
    Ginocchio R; De la Fuente LM; Sánchez P; Bustamante E; Silva Y; Urrestarazu P; Rodríguez PH
    Environ Toxicol Chem; 2009 Oct; 28(10):2069-81. PubMed ID: 19480535
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In situ stabilization of arsenic and lead in contaminated soil using iron-rich water treatment residuals.
    Rathnayake S; Schwab AP
    J Environ Qual; 2022 May; 51(3):425-438. PubMed ID: 35412665
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Soil phosphorus dynamics following land application of unsaturated and partially saturated red mud and water treatment residuals.
    Brennan RB; Murnane JG; Sharpley AN; Herron S; Brye KR; Simmons T
    J Environ Manage; 2019 Oct; 248():109296. PubMed ID: 31376614
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Determination of phytotoxicity of soluble elements in soils, based on a bioassay with lettuce (Lactuca sativa L.).
    Valerio ME; García JF; Peinado FM
    Sci Total Environ; 2007 May; 378(1-2):63-6. PubMed ID: 17316769
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantification of metal bioavailability for lettuce (Lactuca sativa L.) in field soils.
    Peijnenburg W; Baerselman R; de Groot A; Jager T; Leenders D; Posthuma L; Van Veen R
    Arch Environ Contam Toxicol; 2000 Nov; 39(4):420-30. PubMed ID: 11031301
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Water treatment residual as a bioretention media amendment for phosphorus removal].
    Wang JJ; Li T; Zhang Y
    Huan Jing Ke Xue; 2014 Dec; 35(12):4642-7. PubMed ID: 25826936
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Controlled application rate of water treatment residual for agronomic and environmental benefits.
    Oladeji OO; O'Connor GA; Sartain JB; Nair VD
    J Environ Qual; 2007; 36(6):1715-24. PubMed ID: 17940272
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phosphorus Sorption Characteristics in Aluminum-based Water Treatment Residuals Reacted with Dairy Wastewater: 1. Isotherms, XRD, and SEM-EDS Analysis.
    Zohar I; Massey MS; Ippolito JA; Litaor MI
    J Environ Qual; 2018 May; 47(3):538-545. PubMed ID: 29864177
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Leachability and leaching patterns from aluminium-based water treatment residual used as media in laboratory-scale engineered wetlands.
    Babatunde AO; Zhao YQ
    Environ Sci Pollut Res Int; 2010 Aug; 17(7):1314-22. PubMed ID: 20232166
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of soil copper content and pH on copper uptake of selected vegetables grown under controlled conditions.
    Ginocchio R; Rodríguez PH; Badilla-Ohlbaum R; Allen HE; Lagos GE
    Environ Toxicol Chem; 2002 Aug; 21(8):1736-44. PubMed ID: 12152777
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ecological risks of an old wood impregnation mill: application of the Triad approach.
    Karjalainen AM; Kilpi-Koski J; Väisänen AO; Penttinen S; van Gestel CA; Penttinen OP
    Integr Environ Assess Manag; 2009 Jul; 5(3):379-89. PubMed ID: 20050027
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of aging on copper bioavailability in soils.
    Lock K; Janssen CR
    Environ Toxicol Chem; 2003 May; 22(5):1162-6. PubMed ID: 12729229
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Predicting effects of cations on copper toxicity to lettuce (Lactuca sativa) by the biotic ligand model.
    Le TT; Peijnenburg WJ; Hendriks AJ; Vijver MG
    Environ Toxicol Chem; 2012 Feb; 31(2):355-9. PubMed ID: 22105443
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanism and kinetics of aluminum dissolution during copper sorption by acidity paddy soil in South China.
    Liu P; Li Y; Wen Q; Dong C; Pan G
    J Environ Sci (China); 2015 Aug; 34():100-6. PubMed ID: 26257352
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interactive effects of soil acidity and fluoride on soil solution aluminium chemistry and barley (Hordeum vulgare L.) root growth.
    Manoharan V; Loganathan P; Tillman RW; Parfitt RL
    Environ Pollut; 2007 Feb; 145(3):778-86. PubMed ID: 16831500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.