These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 2037822)

  • 1. Implications of macroscopic source strength on cardiac cellular activation models.
    Plonsey R; van Oosterom A
    J Electrocardiol; 1991 Apr; 24(2):99-112. PubMed ID: 2037822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of junctional resistance on source-strength in a linear cable.
    Plonsey R; Barr RC
    Ann Biomed Eng; 1985; 13(1):95-100. PubMed ID: 4003873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A possible subcellular structure based on the macroscopic cardiac source.
    Plonsey R; Barr RC
    J Electrocardiol; 1992; 25 Suppl():80-6. PubMed ID: 1297714
    [No Abstract]   [Full Text] [Related]  

  • 4. Electrophysiological effects of remodeling cardiac gap junctions and cell size: experimental and model studies of normal cardiac growth.
    Spach MS; Heidlage JF; Dolber PC; Barr RC
    Circ Res; 2000 Feb; 86(3):302-11. PubMed ID: 10679482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Models of cardiac tissue electrophysiology: progress, challenges and open questions.
    Clayton RH; Bernus O; Cherry EM; Dierckx H; Fenton FH; Mirabella L; Panfilov AV; Sachse FB; Seemann G; Zhang H
    Prog Biophys Mol Biol; 2011 Jan; 104(1-3):22-48. PubMed ID: 20553746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer simulations of three-dimensional propagation in ventricular myocardium. Effects of intramural fiber rotation and inhomogeneous conductivity on epicardial activation.
    Pollard AE; Burgess MJ; Spitzer KW
    Circ Res; 1993 Apr; 72(4):744-56. PubMed ID: 8443866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of cardiac cell excitation with premature monophasic and biphasic field stimuli: a model study.
    Fishler MG; Sobie EA; Thakor NV; Tung L
    Biophys J; 1996 Mar; 70(3):1347-62. PubMed ID: 8785290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Description of cardiac sources in anisotropic cardiac muscle. Application of bidomain model.
    Geselowitz DB
    J Electrocardiol; 1992; 25 Suppl():65-7. PubMed ID: 1297711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of rotating waves in cardiac muscle: analysis of the effect of an electric field.
    Pumir A; Plaza F; Krinsky VI
    Proc Biol Sci; 1994 Aug; 257(1349):129-34. PubMed ID: 7972160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An audit of uncertainty in multi-scale cardiac electrophysiology models.
    Clayton RH; Aboelkassem Y; Cantwell CD; Corrado C; Delhaas T; Huberts W; Lei CL; Ni H; Panfilov AV; Roney C; Dos Santos RW
    Philos Trans A Math Phys Eng Sci; 2020 Jun; 378(2173):20190335. PubMed ID: 32448070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modifications of the cardiac double-layer source arising from interstitial potentials.
    Plonsey R; Henriquez CS
    J Electrocardiol; 1989; 22 Suppl():48-53. PubMed ID: 2614314
    [No Abstract]   [Full Text] [Related]  

  • 12. Cardiomyocyte cultures with controlled macroscopic anisotropy: a model for functional electrophysiological studies of cardiac muscle.
    Bursac N; Parker KK; Iravanian S; Tung L
    Circ Res; 2002 Dec; 91(12):e45-54. PubMed ID: 12480825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forward and inverse potential field solutions for cardiac strands of cylindrical geometry.
    Ganapathy N; Clark JW; Wilson OB; Giles W
    IEEE Trans Biomed Eng; 1985 Aug; 32(8):566-77. PubMed ID: 4029974
    [No Abstract]   [Full Text] [Related]  

  • 14. [Computing ECG based on action potential of single cardiac cell].
    Zhu H; Yin B; Zhu D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Dec; 18(4):511-4, 519. PubMed ID: 11791294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three distinct directions of intramural activation reveal nonuniform side-to-side electrical coupling of ventricular myocytes.
    Caldwell BJ; Trew ML; Sands GB; Hooks DA; LeGrice IJ; Smaill BH
    Circ Arrhythm Electrophysiol; 2009 Aug; 2(4):433-40. PubMed ID: 19808500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virtual sources associated with linear and curved strands of cardiac cells.
    Tung L; Kléber AG
    Am J Physiol Heart Circ Physiol; 2000 Oct; 279(4):H1579-90. PubMed ID: 11009444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side-to-side fiber connections with increasing age.
    Spach MS; Dolber PC
    Circ Res; 1986 Mar; 58(3):356-71. PubMed ID: 3719925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cellular electromechanical coupling on functional heterogeneity in a one-dimensional tissue model of the myocardium.
    Khokhlova A; Balakina-Vikulova N; Katsnelson L; Solovyova O
    Comput Biol Med; 2017 May; 84():147-155. PubMed ID: 28364644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in cardiac cellular electrophysiology: implications for automaticity and therapeutics.
    Gintant GA; Cohen IS
    Annu Rev Pharmacol Toxicol; 1988; 28():61-81. PubMed ID: 3289494
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of statistically derived fiber models on the estimation of cardiac electrical activation.
    Lekadir K; Pashaei A; Hoogendoorn C; Pereanez M; Albà X; Frangi AF
    IEEE Trans Biomed Eng; 2014 Nov; 61(11):2740-8. PubMed ID: 24893365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.