These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 20378344)

  • 1. Suitability of live and fire-killed small-diameter ponderosa and lodgepole pine trees for manufacturing a new structural wood composite.
    Linton JM; Barnes HM; Seale RD; Jones PD; Lowell EC; Hummel SS
    Bioresour Technol; 2010 Aug; 101(15):6242-7. PubMed ID: 20378344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mountain Pine Beetle Dynamics and Reproductive Success in Post-Fire Lodgepole and Ponderosa Pine Forests in Northeastern Utah.
    Lerch AP; Pfammatter JA; Bentz BJ; Raffa KF
    PLoS One; 2016; 11(10):e0164738. PubMed ID: 27783632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical properties and decay resistance of wood-polymer composites prepared from fast growing species in Turkey.
    Yildiz UC; Yildiz S; Gezer ED
    Bioresour Technol; 2005 Jun; 96(9):1003-11. PubMed ID: 15668197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. To live fast or not: growth, vigor and longevity of old-growth ponderosa pine and lodgepole pine trees.
    Kaufmann MR
    Tree Physiol; 1996; 16(1_2):139-144. PubMed ID: 14871757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acid-catalyzed steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol.
    Ewanick SM; Bura R; Saddler JN
    Biotechnol Bioeng; 2007 Nov; 98(4):737-46. PubMed ID: 17385749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The bioconversion of mountain pine beetle-killed lodgepole pine to fuel ethanol using the organosolv process.
    Pan X; Xie D; Yu RW; Saddler JN
    Biotechnol Bioeng; 2008 Sep; 101(1):39-48. PubMed ID: 18421796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Latent resilience in ponderosa pine forest: effects of resumed frequent fire.
    Larson AJ; Belote RT; Cansler CA; Parks SA; Dietz MS
    Ecol Appl; 2013 Sep; 23(6):1243-9. PubMed ID: 24147398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the physical, mechanical properties and formaldehyde emission of particleboard manufactured from waste stone pine (Pinus pinea L.) cones.
    Buyuksari U; Ayrilmis N; Avci E; Koc E
    Bioresour Technol; 2010 Jan; 101(1):255-9. PubMed ID: 19733063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Landscape variation in tree regeneration and snag fall drive fuel loads in 24-year old post-fire lodgepole pine forests.
    Nelson KN; Turner MG; Romme WH; Tinker DB
    Ecol Appl; 2016 Dec; 26(8):2422-2436. PubMed ID: 27875007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Compatibility between Beetle-Killed Lodgepole Pine (Pinus Contorta var. Latifolia) Wood with Portland Cement.
    Pasca SA; Hartley ID; Reid ME; Thring RW
    Materials (Basel); 2010 Dec; 3(12):5311-5319. PubMed ID: 28883385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abortifacient effects of lodgepole pine (Pinus contorta) and common juniper (Juniperus communis) on cattle.
    Gardner DR; Panter KE; James LF; Stegelmeier BL
    Vet Hum Toxicol; 1998 Oct; 40(5):260-3. PubMed ID: 9778758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of α-cellulose extraction and blue-stain fungus on retrospective studies of carbon and oxygen isotope variation in live and dead trees.
    English NB; McDowell NG; Allen CD; Mora C
    Rapid Commun Mass Spectrom; 2011 Oct; 25(20):3083-90. PubMed ID: 21953963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ectomycorrhizal communities of ponderosa pine and lodgepole pine in the south-central Oregon pumice zone.
    Garcia MO; Smith JE; Luoma DL; Jones MD
    Mycorrhiza; 2016 May; 26(4):275-86. PubMed ID: 26547440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethanol production from SPORL-pretreated lodgepole pine: preliminary evaluation of mass balance and process energy efficiency.
    Zhu JY; Zhu W; Obryan P; Dien BS; Tian S; Gleisner R; Pan XJ
    Appl Microbiol Biotechnol; 2010 May; 86(5):1355-65. PubMed ID: 20072782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the relative contributions of wind vs. animals to seed dispersal of four Sierra Nevada pines.
    Vander Wall SB
    Ecology; 2008 Jul; 89(7):1837-49. PubMed ID: 18705371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mountain Pine Beetle Host Selection Between Lodgepole and Ponderosa Pines in the Southern Rocky Mountains.
    West DR; Briggs JS; Jacobi WR; Negrón JF
    Environ Entomol; 2016 Feb; 45(1):127-41. PubMed ID: 26546596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Storage versus substrate limitation to bole respiratory potential in two coniferous tree species of contrasting sapwood width.
    Pruyn ML; Gartner BL; Harmon ME
    J Exp Bot; 2005 Oct; 56(420):2637-49. PubMed ID: 16118257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood.
    Korkut S; Akgül M; Dündar T
    Bioresour Technol; 2008 Apr; 99(6):1861-8. PubMed ID: 17482811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potential for using the needle litter of Scotch pine (Pinus sylvestris L.) as a raw material for particleboard manufacturing.
    Nemli G; Yildiz S; Derya Gezer E
    Bioresour Technol; 2008 Sep; 99(14):6054-8. PubMed ID: 18242082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lodgepole Pine Cambium (Pinus contorta Dougl. ex Loud. var. latifolia Engelm. ex S. Wats.): a springtime first peoples' food in British Columbia.
    Dilbone M; Turner NJ; von Aderkas P
    Ecol Food Nutr; 2013; 52(2):130-47. PubMed ID: 23445392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.