These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 20378453)

  • 1. Piezoelectric MEMS energy harvesting systems driven by harmonic and random vibrations.
    Blystad LC; Halvorsen E; Husa S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Apr; 57(4):908-19. PubMed ID: 20378453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies.
    Xue H; Hu Y; Wang QM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2104-8. PubMed ID: 18986908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical investigations of energy harvesting efficiency from structural vibrations using piezoelectric and electromagnetic oscillators.
    Harne RL
    J Acoust Soc Am; 2012 Jul; 132(1):162-72. PubMed ID: 22779465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.
    Wang P; Du H
    Rev Sci Instrum; 2015 Jul; 86(7):075002. PubMed ID: 26233403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and analysis of a connected broadband multi-piezoelectric-bimorph- beam energy harvester.
    Zhang H; Afzalul K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jun; 61(6):1016-23. PubMed ID: 24859665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy harvesting performance of piezoelectric ceramic and polymer nanowires.
    Crossley S; Kar-Narayan S
    Nanotechnology; 2015 Aug; 26(34):344001. PubMed ID: 26234477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery.
    Hu Y; Xue H; Hu T; Hu H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):148-60. PubMed ID: 18334321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfabrication and integration of a sol-gel PZT folded spring energy harvester.
    Lueke J; Badr A; Lou E; Moussa WA
    Sensors (Basel); 2015 May; 15(6):12218-41. PubMed ID: 26016911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Piezoelectric monolayers as nonlinear energy harvesters.
    López-Suárez M; Pruneda M; Abadal G; Rurali R
    Nanotechnology; 2014 May; 25(17):175401. PubMed ID: 24722065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin.
    Lee S; Youn BD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):629-45. PubMed ID: 21429855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and analytical parametric study of single-crystal unimorph beams for vibration energy harvesting.
    Karami MA; Bilgen O; Inman DJ; Friswell MI
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1508-20. PubMed ID: 21768034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of a Piezoelectric Energy Harvester and Design of a Charge Pump Converter for CMOS-MEMS Monolithic Integration.
    Duque M; Leon-Salguero E; Sacristán J; Esteve J; Murillo G
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31010076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Bird-Shape Broadband Piezoelectric Energy Harvester for Low Frequency Vibrations.
    Yu H; Zhang X; Shan X; Hu L; Zhang X; Hou C; Xie T
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Piezoelectric microgenerators--current status and challenges.
    Kim HU; Lee WH; Dias HV; Priya S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1555-68. PubMed ID: 19686971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double synchronized switch harvesting (DSSH): a new energy harvesting scheme for efficient energy extraction.
    Lallart M; Garbuio L; Petit L; Richard C; Guyomar D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2119-30. PubMed ID: 18986861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimentally Verified Analytical Models of Piezoelectric Cantilevers in Different Design Configurations.
    Machu Z; Rubes O; Sevecek O; Hadas Z
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers.
    Koven R; Mills M; Gale R; Aksak B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1735-1743. PubMed ID: 28816659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fundamental issues in nonlinear wideband-vibration energy harvesting.
    Halvorsen E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042129. PubMed ID: 23679394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design study of piezoelectric energy-harvesting devices for generation of higher electrical power using a coupled piezoelectric-circuit finite element method.
    Zhu M; Worthington E; Tiwari A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):427-37. PubMed ID: 20178909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit.
    Yu H; Zhou J; Deng L; Wen Z
    Sensors (Basel); 2014 Feb; 14(2):3323-41. PubMed ID: 24556670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.