These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 20378457)

  • 1. Oscillation propagating in non-contact linear piezoelectric ultrasonic levitation transporting system---from solid state to fluid media.
    Li X; Sun Y; Chen C; Zhao C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Apr; 57(4):951-6. PubMed ID: 20378457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical and experimental research on a disk-type non-contact ultrasonic motor.
    Yang B; Liu J; Chen D; Cai B
    Ultrasonics; 2006 Jul; 44(3):238-43. PubMed ID: 16524609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ultrasonically levitated noncontact stage using traveling vibrations on precision ceramic guide rails.
    Koyama D; Ide T; Friend JR; Nakamura K; Ueha S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Mar; 54(3):597-604. PubMed ID: 17375828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel modeling technique for the stator of traveling wave ultrasonic motors.
    Pons JL; Rodríguez H; Ceres R; Calderón L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1429-35. PubMed ID: 14682626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of surface acoustic wave motor with spherical slider.
    Morita T; Kurosawa MK; Higuchi T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):929-34. PubMed ID: 18238497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elastic contact conditions to optimize friction drive of surface acoustic wave motor.
    Kuribayashi Kurosawa M; Takahashi M; Higuchi T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1229-37. PubMed ID: 18244284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A piezoelectric motor using flexural vibration of a thin piezoelectric membrane.
    Lamberti N; Iula A; Pappalardo M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):23-9. PubMed ID: 18244154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A standing wave-type noncontact linear ultrasonic motor.
    Hu J; Li G; Chan HL; Choy CL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 May; 48(3):699-708. PubMed ID: 11381693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Piezoelectric linear motor concepts based on coupling of longitudinal vibrations.
    Hemsel T; Mracek M; Twiefel J; Vasiljev P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e591-6. PubMed ID: 16782160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupled tangential-axial resonant modes of piezoelectric hollow cylinders and their application in ultrasonic motors.
    Vyshnevskyy O; Kovalev S; Mehner J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jan; 52(1):31-6. PubMed ID: 15742560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A linear analysis of the effect of Faradaic currents on traveling-wave electroosmosis.
    Ramos A; González A; García-Sánchez P; Castellanos A
    J Colloid Interface Sci; 2007 May; 309(2):323-31. PubMed ID: 17346725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on the Langevin piezoelectric ceramic ultrasonic transducer of longitudinal-flexural composite vibrational mode.
    Lin S
    Ultrasonics; 2006 Jan; 44(1):109-14. PubMed ID: 16289195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A self-running standing wave-type bidirectional slider for the ultrasonically levitated thin linear stage.
    Koyama D; Takei H; Nakamura K; Ueha S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1823-30. PubMed ID: 18986924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contact analysis and mathematical modeling of traveling wave ultrasonic motors.
    Zhu M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jun; 51(6):668-79. PubMed ID: 15244280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscoacoustic model for near-field ultrasonic levitation.
    Melikhov I; Chivilikhin S; Amosov A; Jeanson R
    Phys Rev E; 2016 Nov; 94(5-1):053103. PubMed ID: 27967155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergetic driving concepts for bundled miniature ultrasonic linear motors.
    Mracek M; Hemsel T
    Ultrasonics; 2006 Dec; 44 Suppl 1():e597-602. PubMed ID: 16824572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on internal flow and surface deformation of large droplet levitated by ultrasonic wave.
    Abe Y; Hyuga D; Yamada S; Aoki K
    Ann N Y Acad Sci; 2006 Sep; 1077():49-62. PubMed ID: 17124114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical study of ultrasonic wave transmission through a fluid-solid interface.
    Belgroune D; de Belleval JF; Djelouah H
    Ultrasonics; 2008 Jul; 48(3):220-30. PubMed ID: 18328524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of composite piezoelectric structures with the finite volume method.
    Bolborici V; Dawson FP; Pugh MC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):156-62. PubMed ID: 22293746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ultrasonic air pump using an acoustic traveling wave along a small air gap.
    Koyama D; Wada Y; Nakamura K; Nishikawa M; Nakagawa T; Kihara H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):253-61. PubMed ID: 20040451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.