These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 20378457)

  • 21. Levitation-free vibrated droplets: resonant oscillations of liquid marbles.
    McHale G; Elliott SJ; Newton MI; Herbertson DL; Esmer K
    Langmuir; 2009 Jan; 25(1):529-33. PubMed ID: 19115875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Driving mechanism, design, fabrication process, and experiments of a cylindrical ultrasonic linear microactuator.
    Wang S; Sun D; Sakurai J; Choi K; Hata S; Shimokohbe A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jan; 58(1):168-77. PubMed ID: 21244984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DPSM technique for ultrasonic field modelling near fluid-solid interface.
    Banerjee S; Kundu T; Alnuaimi NA
    Ultrasonics; 2007 Jun; 46(3):235-50. PubMed ID: 17397891
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Standing wave bi-directional linearly moving ultrasonic motor.
    He S; Chen W; Tao X; Chen Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1133-9. PubMed ID: 18244271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel ultrasonic clutch using near-field acoustic levitation.
    Chang KT
    Ultrasonics; 2004 Oct; 43(1):49-55. PubMed ID: 15358528
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrasonic wave propagation in heterogeneous solid media: theoretical analysis and experimental validation.
    Chaix JF; Garnier V; Corneloup G
    Ultrasonics; 2006 Feb; 44(2):200-10. PubMed ID: 16386772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical analyses and numerical simulations of the torsional mode for two acoustic viscometers with preliminary experimental tests.
    Ai Y; Lange RA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):648-58. PubMed ID: 18407854
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A two-layer linear piezoelectric micromotor.
    Li X; Ci P; Liu G; Dong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Mar; 62(3):405-11. PubMed ID: 25768809
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A parametric study of ultrasonic beam profiles for a linear phased array transducer.
    Lee JH; Choi SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(3):644-50. PubMed ID: 18238592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission.
    Haïat G; Naili S; Grimal Q; Talmant M; Desceliers C; Soize C
    J Acoust Soc Am; 2009 Jun; 125(6):4043-52. PubMed ID: 19507985
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrasonic propagation velocity in magnetic and magnetorheological fluids due to an external magnetic field.
    Bramantya MA; Motozawa M; Sawada T
    J Phys Condens Matter; 2010 Aug; 22(32):324102. PubMed ID: 21386478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diffraction aperture non-ideal behaviour of air coupled transducers array elements designed for NDT.
    Prego Borges JL; Montero de Espinosa F; Salazar J; Garcia-Alvarez J; Chávez JA; Turó A; Garcia-Hernandez MJ
    Ultrasonics; 2006 Dec; 44 Suppl 1():e667-72. PubMed ID: 16797644
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Schlieren visualization of ultrasonic wave fields with high spatial resolution.
    Neumann T; Ermert H
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1561-6. PubMed ID: 16815508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effective mixing of laminar flows at a density interface by an integrated ultrasonic transducer.
    Johansson L; Johansson S; Nikolajeff F; Thorslund S
    Lab Chip; 2009 Jan; 9(2):297-304. PubMed ID: 19107288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrasonic field modeling by distributed point source method for different transducer boundary conditions.
    Yanagita T; Kundu T; Placko D
    J Acoust Soc Am; 2009 Nov; 126(5):2331-9. PubMed ID: 19894816
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contact analysis and experimental investigation of a linear ultrasonic motor.
    Lv Q; Yao Z; Li X
    Ultrasonics; 2017 Nov; 81():32-38. PubMed ID: 28577413
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of anisotropy on acoustoelastic birefringence in wood.
    Sasaki Y; Hasegawa M
    Ultrasonics; 2007 May; 46(2):184-90. PubMed ID: 17383706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An ultrasonic linear motor using ridge-mode traveling waves.
    Tominaga M; Kaminaga R; Friend JR; Nakamura K; Ueha S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Oct; 52(10):1735-42. PubMed ID: 16382624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Finite element modelling of a rotating piezoelectric ultrasonic motor.
    Frangi A; Corigliano A; Binci M; Faure P
    Ultrasonics; 2005 Oct; 43(9):747-55. PubMed ID: 15975618
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A general model of the axle vibration in piezoelectric motors.
    Iula A; Pappalardo M
    Ultrasonics; 2004 Apr; 42(1-9):291-6. PubMed ID: 15047300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.