These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 20378481)

  • 21. Implantable myoelectric sensors (IMESs) for intramuscular electromyogram recording.
    Weir RF; Troyk PR; DeMichele GA; Kerns DA; Schorsch JF; Maas H
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):159-71. PubMed ID: 19224729
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Robustness of neuroprosthetic decoding algorithms.
    Serruya M; Hatsopoulos N; Fellows M; Paninski L; Donoghue J
    Biol Cybern; 2003 Mar; 88(3):219-28. PubMed ID: 12647229
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Classification of single-trial electroencephalogram during finger movement.
    Li Y; Gao X; Liu H; Gao S
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):1019-25. PubMed ID: 15188873
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Refined myoelectric control in below-elbow amputees using artificial neural networks and a data glove.
    Sebelius FC; Rosén BN; Lundborg GN
    J Hand Surg Am; 2005 Jul; 30(4):780-9. PubMed ID: 16039372
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detecting movement-related EEG change by wavelet decomposition-based neural networks trained with single thumb movement.
    Chen CW; Lin CC; Ju MS
    Clin Neurophysiol; 2007 Apr; 118(4):802-14. PubMed ID: 17317306
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impairment of individual finger movements in Parkinson's disease.
    Agostino R; Currà A; Giovannelli M; Modugno N; Manfredi M; Berardelli A
    Mov Disord; 2003 May; 18(5):560-5. PubMed ID: 12722170
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design and testing of an advanced implantable neuroprosthesis with myoelectric control.
    Hart RL; Bhadra N; Montague FW; Kilgore KL; Peckham PH
    IEEE Trans Neural Syst Rehabil Eng; 2011 Feb; 19(1):45-53. PubMed ID: 20876029
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electromyographic evidence of two functional subdivisions in the rhesus monkey's flexor digitorum profundus.
    Schieber MH
    Exp Brain Res; 1993; 95(2):251-60. PubMed ID: 8224050
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Motor timing and more--additional options using advanced registration and evaluation of tapping data.
    Dung CK; Staude G; Wolf W
    Biomed Tech (Berl); 2007 Feb; 52(1):156-63. PubMed ID: 17313353
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of individual finger muscle activity in the extensor digitorum communis by surface EMG.
    Leijnse JN; Campbell-Kyureghyan NH; Spektor D; Quesada PM
    J Neurophysiol; 2008 Dec; 100(6):3225-35. PubMed ID: 18650306
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Decoding of individuated finger movements using surface EMG and input optimization applying a genetic algorithm.
    Kanitz GR; Antfolk C; Cipriani C; Sebelius F; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1608-11. PubMed ID: 22254630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduced muscle selectivity during individuated finger movements in humans after damage to the motor cortex or corticospinal tract.
    Lang CE; Schieber MH
    J Neurophysiol; 2004 Apr; 91(4):1722-33. PubMed ID: 14668295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject.
    Hotson G; McMullen DP; Fifer MS; Johannes MS; Katyal KD; Para MP; Armiger R; Anderson WS; Thakor NV; Wester BA; Crone NE
    J Neural Eng; 2016 Apr; 13(2):026017-26017. PubMed ID: 26863276
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Real-time myoelectric decoding of individual finger movements for a virtual target task.
    Smith RJ; Huberdeau D; Tenore F; Thakor NV
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2376-9. PubMed ID: 19965192
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relations between surface EMG of extrinsic flexors and individual finger forces support the notion of muscle compartments.
    Danion F; Li S; Zatsiorsky VM; Latash ML
    Eur J Appl Physiol; 2002 Nov; 88(1-2):185-8. PubMed ID: 12436289
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Classification of Individual Finger Movements Using Intracortical Recordings in Human Motor Cortex.
    Jorge A; Royston DA; Tyler-Kabara EC; Boninger ML; Collinger JL
    Neurosurgery; 2020 Sep; 87(4):630-638. PubMed ID: 32140722
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dependence Independence Measure for Posterior and Anterior EMG Sensors Used in Simple and Complex Finger Flexion Movements: Evaluation Using SDICA.
    Naik GR; Baker KG; Nguyen HT
    IEEE J Biomed Health Inform; 2015 Sep; 19(5):1689-1696. PubMed ID: 25055388
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Blind separation of linear instantaneous mixtures of nonstationary surface myoelectric signals.
    Farina D; Févotte C; Doncarli C; Merletti R
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1555-67. PubMed ID: 15376504
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection and classification of multiple finger movements using a chronically implanted Utah Electrode Array.
    Egan J; Baker J; House P; Greger B
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7320-3. PubMed ID: 22256029
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A magnetic field system using implanted sensors to track limb movements in the monkey.
    Nocher JD; Lee JS; Miller LE
    J Neurosci Methods; 1996 Aug; 67(2):203-10. PubMed ID: 8872887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.