These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

460 related articles for article (PubMed ID: 20378773)

  • 41. The Bam complex catalyzes efficient insertion of bacterial outer membrane proteins into membrane vesicles of variable lipid composition.
    Hussain S; Bernstein HD
    J Biol Chem; 2018 Feb; 293(8):2959-2973. PubMed ID: 29311257
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Insights into the function and structural flexibility of the periplasmic molecular chaperone SurA.
    Zhong M; Ferrell B; Lu W; Chai Q; Wei Y
    J Bacteriol; 2013 Mar; 195(5):1061-7. PubMed ID: 23275244
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dissecting the Escherichia coli periplasmic chaperone network using differential proteomics.
    Denoncin K; Schwalm J; Vertommen D; Silhavy TJ; Collet JF
    Proteomics; 2012 May; 12(9):1391-401. PubMed ID: 22589188
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The periplasmic chaperone Skp facilitates targeting, insertion, and folding of OmpA into lipid membranes with a negative membrane surface potential.
    Patel GJ; Behrens-Kneip S; Holst O; Kleinschmidt JH
    Biochemistry; 2009 Nov; 48(43):10235-45. PubMed ID: 19780589
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Augmenting β-augmentation: structural basis of how BamB binds BamA and may support folding of outer membrane proteins.
    Heuck A; Schleiffer A; Clausen T
    J Mol Biol; 2011 Mar; 406(5):659-66. PubMed ID: 21236263
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif.
    Robert V; Volokhina EB; Senf F; Bos MP; Van Gelder P; Tommassen J
    PLoS Biol; 2006 Nov; 4(11):e377. PubMed ID: 17090219
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Conserved substrate binding by chaperones in the bacterial periplasm and the mitochondrial intermembrane space.
    Alcock FH; Grossmann JG; Gentle IE; Likić VA; Lithgow T; Tokatlidis K
    Biochem J; 2008 Jan; 409(2):377-87. PubMed ID: 17894549
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Solution NMR studies of membrane-protein-chaperone complexes.
    Burmann BM; Hiller S
    Chimia (Aarau); 2012; 66(10):759-63. PubMed ID: 23146261
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The periplasmic bacterial molecular chaperone SurA adapts its structure to bind peptides in different conformations to assert a sequence preference for aromatic residues.
    Xu X; Wang S; Hu YX; McKay DB
    J Mol Biol; 2007 Oct; 373(2):367-81. PubMed ID: 17825319
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Classifying β-Barrel Assembly Substrates by Manipulating Essential Bam Complex Members.
    Mahoney TF; Ricci DP; Silhavy TJ
    J Bacteriol; 2016 Jul; 198(14):1984-92. PubMed ID: 27161117
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Outer membrane targeting of secretin PulD protein relies on disordered domain recognition by a dedicated chaperone.
    Nickerson NN; Tosi T; Dessen A; Baron B; Raynal B; England P; Pugsley AP
    J Biol Chem; 2011 Nov; 286(45):38833-43. PubMed ID: 21878629
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Crystal structure of Escherichia coli BamB, a lipoprotein component of the β-barrel assembly machinery complex.
    Kim KH; Paetzel M
    J Mol Biol; 2011 Mar; 406(5):667-78. PubMed ID: 21168416
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Insertion of a chaperone domain converts FKBP12 into a powerful catalyst of protein folding.
    Knappe TA; Eckert B; Schaarschmidt P; Scholz C; Schmid FX
    J Mol Biol; 2007 May; 368(5):1458-68. PubMed ID: 17397867
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Substrate binding to BamD triggers a conformational change in BamA to control membrane insertion.
    Lee J; Sutterlin HA; Wzorek JS; Mandler MD; Hagan CL; Grabowicz M; Tomasek D; May MD; Hart EM; Silhavy TJ; Kahne D
    Proc Natl Acad Sci U S A; 2018 Mar; 115(10):2359-2364. PubMed ID: 29463713
    [TBL] [Abstract][Full Text] [Related]  

  • 55. SurA is a cryptically grooved chaperone that expands unfolded outer membrane proteins.
    Marx DC; Plummer AM; Faustino AM; Devlin T; Roskopf MA; Leblanc MJ; Lessen HJ; Amann BT; Fleming PJ; Krueger S; Fried SD; Fleming KG
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):28026-28035. PubMed ID: 33093201
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Building Better Barrels - β-barrel Biogenesis and Insertion in Bacteria and Mitochondria.
    Diederichs KA; Buchanan SK; Botos I
    J Mol Biol; 2021 Aug; 433(16):166894. PubMed ID: 33639212
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [The extracytoplasmic protein quality control in bacterium Escherichia coli; the role of proteases and the folding factors].
    Skórko-Glonek J; Sobiecka-Szkatuła A
    Postepy Biochem; 2008; 54(3):317-26. PubMed ID: 19112831
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The periplasmic chaperone SurA exploits two features characteristic of integral outer membrane proteins for selective substrate recognition.
    Hennecke G; Nolte J; Volkmer-Engert R; Schneider-Mergener J; Behrens S
    J Biol Chem; 2005 Jun; 280(25):23540-8. PubMed ID: 15840585
    [TBL] [Abstract][Full Text] [Related]  

  • 59. BamA β16C strand and periplasmic turns are critical for outer membrane protein insertion and assembly.
    Gu Y; Zeng Y; Wang Z; Dong C
    Biochem J; 2017 Nov; 474(23):3951-3961. PubMed ID: 28974626
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transmembrane domain of surface-exposed outer membrane lipoprotein RcsF is threaded through the lumen of β-barrel proteins.
    Konovalova A; Perlman DH; Cowles CE; Silhavy TJ
    Proc Natl Acad Sci U S A; 2014 Oct; 111(41):E4350-8. PubMed ID: 25267629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.