These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 20378960)
1. Improvement of coenzyme Q(10) production by increasing the NADH/NAD(+) ratio in Agrobacterium tumefaciens. Koo BS; Gong YJ; Kim SY; Kim CW; Lee HC Biosci Biotechnol Biochem; 2010; 74(4):895-8. PubMed ID: 20378960 [TBL] [Abstract][Full Text] [Related]
2. Association of colony morphology with coenzyme Q(10) production and its enhancement from Rhizobium radiobacter T6102W by addition of isopentenyl alcohol as a precursor. Seo MJ; Kook MC; Kim SO J Microbiol Biotechnol; 2012 Feb; 22(2):230-3. PubMed ID: 22370354 [TBL] [Abstract][Full Text] [Related]
3. Optimization of culture conditions and scale-up to pilot and plant scales for coenzyme Q10 production by Agrobacterium tumefaciens. Ha SJ; Kim SY; Seo JH; Oh DK; Lee JK Appl Microbiol Biotechnol; 2007 Apr; 74(5):974-80. PubMed ID: 17124579 [TBL] [Abstract][Full Text] [Related]
4. Controlling the sucrose concentration increases Coenzyme Q10 production in fed-batch culture of Agrobacterium tumefaciens. Ha SJ; Kim SY; Seo JH; Moon HJ; Lee KM; Lee JK Appl Microbiol Biotechnol; 2007 Aug; 76(1):109-16. PubMed ID: 17479258 [TBL] [Abstract][Full Text] [Related]
5. Specific interactions of 3-phosphoglyceroyl-glyceraldehyde-3-phosphate dehydrogenase with coenzymes. Seydoux FJ; Kelemen N; Kellershohn N; Roucous C Eur J Biochem; 1976 May; 64(2):481-9. PubMed ID: 179814 [TBL] [Abstract][Full Text] [Related]
7. Biochemical characterisation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) from the liver fluke, Fasciola hepatica. Zinsser VL; Hoey EM; Trudgett A; Timson DJ Biochim Biophys Acta; 2014 Apr; 1844(4):744-9. PubMed ID: 24566472 [TBL] [Abstract][Full Text] [Related]
8. Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool. Girbal L; Soucaille P J Bacteriol; 1994 Nov; 176(21):6433-8. PubMed ID: 7961393 [TBL] [Abstract][Full Text] [Related]
9. Kinetic properties of NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from the host fraction of soybean root nodules. Copeland L; Zammit A Arch Biochem Biophys; 1994 Jul; 312(1):107-13. PubMed ID: 8031116 [TBL] [Abstract][Full Text] [Related]
10. Coenzyme Q(1) depletes NAD(P)H and impairs recycling of ascorbate in astrocytes. Dragan M; Dixon SJ; Jaworski E; Chan TS; O'brien PJ; Wilson JX Brain Res; 2006 Mar; 1078(1):9-18. PubMed ID: 16499885 [TBL] [Abstract][Full Text] [Related]
11. The glyceraldehyde-3-phosphate dehydrogenase promoter of the food yeast Candida utilis strain NRRL Y-660 is functional in Agrobacterium tumefaciens. González T; Eng F; Fraga R; Fonseca J; Amores I J Appl Genet; 2013 Nov; 54(4):495-9. PubMed ID: 23873160 [TBL] [Abstract][Full Text] [Related]
12. Saturation kinetics of coenzyme Q in NADH and succinate oxidation in beef heart mitochondria. Estornell E; Fato R; Castelluccio C; Cavazzoni M; Parenti Castelli G; Lenaz G FEBS Lett; 1992 Oct; 311(2):107-9. PubMed ID: 1327877 [TBL] [Abstract][Full Text] [Related]
13. Subunit interactions in glyceraldehyde-3-phosphate dehydrogenases. Their involvement in nucleotide binding and cooperativity. Scheek RM; Kalkman ML; Berden JA; Slater EC Biochim Biophys Acta; 1980 Jun; 613(2):275-91. PubMed ID: 7004489 [TBL] [Abstract][Full Text] [Related]
14. Factors affecting coenzyme binding and subunit interactions in glyceraldehyde-3-phosphate dehydrogenase. Reynolds CH; Dalziel K Biochim Biophys Acta; 1979 Apr; 567(2):287-94. PubMed ID: 36152 [TBL] [Abstract][Full Text] [Related]
15. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. Garrigues C; Loubiere P; Lindley ND; Cocaign-Bousquet M J Bacteriol; 1997 Sep; 179(17):5282-7. PubMed ID: 9286977 [TBL] [Abstract][Full Text] [Related]
16. Catalytic mechanism and interactions of NAD+ with glyceraldehyde-3-phosphate dehydrogenase: correlation of EPR data and enzymatic studies. Wilder RT; Venkataramu SD; Dalton LR; Birktoft JJ; Trommer WE; Park JH Biochim Biophys Acta; 1989 Jul; 997(1-2):65-77. PubMed ID: 2546610 [TBL] [Abstract][Full Text] [Related]
17. Evidence for the two phosphate binding sites of an analogue of the thioacyl intermediate for the Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase-catalyzed reaction, from its crystal structure. Castilho MS; Pavão F; Oliva G; Ladame S; Willson M; Périé J Biochemistry; 2003 Jun; 42(23):7143-51. PubMed ID: 12795610 [TBL] [Abstract][Full Text] [Related]
18. Subunit interactions in rabbit-muscle glyceraldehyde-phosphate dehydrogenase, as measured by NAD+ and NADH binding. Scheek RM; Berden JA; Hooghiemstra R; Slater EC Biochim Biophys Acta; 1979 Aug; 569(2):124-34. PubMed ID: 224931 [TBL] [Abstract][Full Text] [Related]
19. Equilibrium of the intracellular redox state for improving cell growth and L-lysine yield of Corynebacterium glutamicum by optimal cofactor swapping. Xu JZ; Ruan HZ; Chen XL; Zhang F; Zhang W Microb Cell Fact; 2019 Apr; 18(1):65. PubMed ID: 30943966 [TBL] [Abstract][Full Text] [Related]
20. Media development for large scale Agrobacterium tumefaciens culture. Leth IK; McDonald KA Biotechnol Prog; 2017 Sep; 33(5):1218-1225. PubMed ID: 28556626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]