These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 20379493)
1. Towards understanding a mechanism for reversible hydrogen storage: theoretical study of transition metal catalysed dehydrogenation of sodium alanate. Ljubić I; Clary DC Phys Chem Chem Phys; 2010 Apr; 12(16):4012-23. PubMed ID: 20379493 [TBL] [Abstract][Full Text] [Related]
2. Effect of doped transition metal on reversible hydrogen release/uptake from NaAlH4. Liu J; Han Y; Ge Q Chemistry; 2009; 15(7):1685-95. PubMed ID: 19115295 [TBL] [Abstract][Full Text] [Related]
3. Understanding the role of Ti in reversible hydrogen storage as sodium alanate: a combined experimental and density functional theoretical approach. Chaudhuri S; Graetz J; Ignatov A; Reilly JJ; Muckerman JT J Am Chem Soc; 2006 Sep; 128(35):11404-15. PubMed ID: 16939263 [TBL] [Abstract][Full Text] [Related]
4. Functional anion concept: effect of fluorine anion on hydrogen storage of sodium alanate. Yin LC; Wang P; Kang XD; Sun CH; Cheng HM Phys Chem Chem Phys; 2007 Mar; 9(12):1499-502. PubMed ID: 17356758 [TBL] [Abstract][Full Text] [Related]
5. Formation of Al2H7- anions--indirect evidence of volatile AlH3 on sodium alanate using solid-state NMR spectroscopy. Felderhoff M; Zibrowius B Phys Chem Chem Phys; 2011 Oct; 13(38):17234-41. PubMed ID: 21879065 [TBL] [Abstract][Full Text] [Related]
6. Effect of particle size on hydrogen release from sodium alanate nanoparticles. Mueller T; Ceder G ACS Nano; 2010 Oct; 4(10):5647-56. PubMed ID: 20849095 [TBL] [Abstract][Full Text] [Related]
7. Hydrogen-release mechanisms in lithium amidoboranes. Kim DY; Singh NJ; Lee HM; Kim KS Chemistry; 2009; 15(22):5598-604. PubMed ID: 19370741 [TBL] [Abstract][Full Text] [Related]
8. Vacancy-mediated dehydrogenation of sodium alanate. Gunaydin H; Houk KN; Ozolins V Proc Natl Acad Sci U S A; 2008 Mar; 105(10):3673-7. PubMed ID: 18299582 [TBL] [Abstract][Full Text] [Related]
9. Reversible hydrogen storage by NaAlH4 confined within a titanium-functionalized MOF-74(Mg) nanoreactor. Stavila V; Bhakta RK; Alam TM; Majzoub EH; Allendorf MD ACS Nano; 2012 Nov; 6(11):9807-17. PubMed ID: 23075161 [TBL] [Abstract][Full Text] [Related]
10. Dehydrogenation mechanisms and thermodynamics of MNH2BH3 (M=Li, Na) metal amidoboranes as predicted from first principles. Shevlin SA; Kerkeni B; Guo ZX Phys Chem Chem Phys; 2011 May; 13(17):7649-59. PubMed ID: 21336360 [TBL] [Abstract][Full Text] [Related]
11. Rules and trends of metal cation driven hydride-transfer mechanisms in metal amidoboranes. Kim DY; Lee HM; Seo J; Shin SK; Kim KS Phys Chem Chem Phys; 2010; 12(20):5446-53. PubMed ID: 20372731 [TBL] [Abstract][Full Text] [Related]
12. A dehydrogenation mechanism of metal hydrides based on interactions between Hdelta+ and H-. Lu J; Fang ZZ; Sohn HY Inorg Chem; 2006 Oct; 45(21):8749-54. PubMed ID: 17029387 [TBL] [Abstract][Full Text] [Related]
13. Hydrogen-related catalytic effects of Ti and other light transition metals on NaAlH(4) surfaces. Iñiguez J; Yildirim T J Phys Condens Matter; 2007 Apr; 19(17):176007. PubMed ID: 21690944 [TBL] [Abstract][Full Text] [Related]
14. General rules for predicting where a catalytic reaction should occur on metal surfaces: a density functional theory study of C-H and C-O bond breaking/making on flat, stepped, and kinked metal surfaces. Liu ZP; Hu P J Am Chem Soc; 2003 Feb; 125(7):1958-67. PubMed ID: 12580623 [TBL] [Abstract][Full Text] [Related]
15. First-principles study of hydrogen vacancies in sodium alanate with Ti substitution. Wang H; Tezuka A; Ogawa H; Ikeshoji T J Phys Condens Matter; 2010 May; 22(20):205503. PubMed ID: 21393708 [TBL] [Abstract][Full Text] [Related]
16. Equilibrium structure and Ti-catalyzed H2 desorption in NaAlH4 nanoparticles from density functional theory. Vegge T Phys Chem Chem Phys; 2006 Nov; 8(42):4853-61. PubMed ID: 17066174 [TBL] [Abstract][Full Text] [Related]
17. First-principles study of Ti-catalyzed hydrogen chemisorption on an Al surface: a critical first step for reversible hydrogen storage in NaAlH4. Chaudhuri S; Muckerman JT J Phys Chem B; 2005 Apr; 109(15):6952-7. PubMed ID: 16851788 [TBL] [Abstract][Full Text] [Related]
18. Decomposition of CH2O by lanthanum: a theoretical study. Zhang G; Li ZH; Wang WN; Fan KN J Phys Chem A; 2007 Nov; 111(46):11894-903. PubMed ID: 17966997 [TBL] [Abstract][Full Text] [Related]
19. Exploration of the nature of active Ti species in metallic Ti-doped NaAlH4. Wang P; Kang XD; Cheng HM J Phys Chem B; 2005 Nov; 109(43):20131-6. PubMed ID: 16853602 [TBL] [Abstract][Full Text] [Related]
20. Significant increase in the stability of rare gas hydrides on insertion of beryllium atom. Jayasekharan T; Ghanty TK J Chem Phys; 2007 Sep; 127(11):114314. PubMed ID: 17887844 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]