BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 20379610)

  • 1. Distinct mechanisms for the pro-apoptotic conformational transition and alkaline transition in cytochrome c.
    Ying T; Wang ZH; Zhong F; Tan X; Huang ZX
    Chem Commun (Camb); 2010 May; 46(20):3541-3. PubMed ID: 20379610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton-mediated dynamics of the alkaline conformational transition of yeast iso-1-cytochrome c.
    Martinez RE; Bowler BE
    J Am Chem Soc; 2004 Jun; 126(21):6751-8. PubMed ID: 15161303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional role of a protein foldon--an Omega-loop foldon controls the alkaline transition in ferricytochrome c.
    Maity H; Rumbley JN; Englander SW
    Proteins; 2006 May; 63(2):349-55. PubMed ID: 16287119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tyrosine-67 in cytochrome c is a possible apoptotic trigger controlled by hydrogen bonds via a conformational transition.
    Ying T; Wang ZH; Lin YW; Xie J; Tan X; Huang ZX
    Chem Commun (Camb); 2009 Aug; (30):4512-4. PubMed ID: 19617967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP acts as a regulatory effector in modulating structural transitions of cytochrome c: implications for apoptotic activity.
    Patriarca A; Eliseo T; Sinibaldi F; Piro MC; Melis R; Paci M; Cicero DO; Polticelli F; Santucci R; Fiorucci L
    Biochemistry; 2009 Apr; 48(15):3279-87. PubMed ID: 19231839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EPR and optical spectroscopic studies of Met80X mutants of yeast ferricytochrome c. Models for intermediates in the alkaline transition.
    Silkstone GG; Cooper CE; Svistunenko D; Wilson MT
    J Am Chem Soc; 2005 Jan; 127(1):92-9. PubMed ID: 15631458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Communication of stabilizing energy between substructures of a protein.
    Kristinsson R; Bowler BE
    Biochemistry; 2005 Feb; 44(7):2349-59. PubMed ID: 15709747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytochrome c: functions beyond respiration.
    Ow YP; Green DR; Hao Z; Mak TW
    Nat Rev Mol Cell Biol; 2008 Jul; 9(7):532-42. PubMed ID: 18568041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alkaline conformational transition and gated electron transfer with a Lys 79 --> his variant of iso-1-cytochrome c.
    Bandi S; Baddam S; Bowler BE
    Biochemistry; 2007 Sep; 46(37):10643-54. PubMed ID: 17713929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformationally gated electron transfer in iso-1-cytochrome c: engineering the rate of a conformational switch.
    Baddam S; Bowler BE
    J Am Chem Soc; 2005 Jul; 127(27):9702-3. PubMed ID: 15998071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The conformational manifold of ferricytochrome c explored by visible and far-UV electronic circular dichroism spectroscopy.
    Hagarman A; Duitch L; Schweitzer-Stenner R
    Biochemistry; 2008 Sep; 47(36):9667-77. PubMed ID: 18702508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochrome c as an experimental model protein.
    Stevens JM
    Metallomics; 2011 Apr; 3(4):319-22. PubMed ID: 21264390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free energy of transition for the individual alkaline conformers of yeast iso-1-cytochrome c.
    Battistuzzi G; Borsari M; De Rienzo F; Di Rocco G; Ranieri A; Sola M
    Biochemistry; 2007 Feb; 46(6):1694-702. PubMed ID: 17243773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability and apoptotic activity of recombinant human cytochrome c.
    Olteanu A; Patel CN; Dedmon MM; Kennedy S; Linhoff MW; Minder CM; Potts PR; Deshmukh M; Pielak GJ
    Biochem Biophys Res Commun; 2003 Dec; 312(3):733-40. PubMed ID: 14680826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutation of asparagine 52 to glycine promotes the alkaline form of iso-1-cytochrome c and causes loss of cooperativity in acid unfolding.
    Baddam S; Bowler BE
    Biochemistry; 2006 Apr; 45(14):4611-9. PubMed ID: 16584196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered structure and dynamics of pathogenic cytochrome c variants correlate with increased apoptotic activity.
    Fellner M; Parakra R; McDonald KO; Kass I; Jameson GNL; Wilbanks SM; Ledgerwood EC
    Biochem J; 2021 Feb; 478(3):669-684. PubMed ID: 33480393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-dependent conformational changes of ferricytochrome c induced by electrode surface microstructure.
    Jiang X; Qu X; Zhang L; Zhang Z; Jiang J; Wang E; Dong S
    Biophys Chem; 2004 Aug; 110(3):203-11. PubMed ID: 15228956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational change and human cytochrome c function: mutation of residue 41 modulates caspase activation and destabilizes Met-80 coordination.
    Josephs TM; Liptak MD; Hughes G; Lo A; Smith RM; Wilbanks SM; Bren KL; Ledgerwood EC
    J Biol Inorg Chem; 2013 Mar; 18(3):289-97. PubMed ID: 23334161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conjugation of cytochrome c with hydrogen titanate nanotubes: novel conformational state with implications for apoptosis.
    Ray M; Chatterjee S; Das T; Bhattacharyya S; Ayyub P; Mazumdar S
    Nanotechnology; 2011 Oct; 22(41):415705. PubMed ID: 21918298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased dynamics in the 40-57 Ω-loop of the G41S variant of human cytochrome c promote its pro-apoptotic conformation.
    Karsisiotis AI; Deacon OM; Wilson MT; Macdonald C; Blumenschein TM; Moore GR; Worrall JA
    Sci Rep; 2016 Jul; 6():30447. PubMed ID: 27461282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.