BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 20379743)

  • 1. Virulence determinants involved in differential host niche adaptation of Neisseria meningitidis and Neisseria gonorrhoeae.
    Schielke S; Frosch M; Kurzai O
    Med Microbiol Immunol; 2010 Aug; 199(3):185-96. PubMed ID: 20379743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neisseria gonorrhoeae Crippled Its Peptidoglycan Fragment Permease To Facilitate Toxic Peptidoglycan Monomer Release.
    Chan JM; Dillard JP
    J Bacteriol; 2016 Nov; 198(21):3029-3040. PubMed ID: 27551020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of regions of the chromosome of Neisseria meningitidis and Neisseria gonorrhoeae which are specific to the pathogenic Neisseria species.
    Perrin A; Nassif X; Tinsley C
    Infect Immun; 1999 Nov; 67(11):6119-29. PubMed ID: 10531275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genomics identifies the genetic islands that distinguish Neisseria meningitidis, the agent of cerebrospinal meningitis, from other Neisseria species.
    Perrin A; Bonacorsi S; Carbonnelle E; Talibi D; Dessen P; Nassif X; Tinsley C
    Infect Immun; 2002 Dec; 70(12):7063-72. PubMed ID: 12438387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathogenic neisseriae: surface modulation, pathogenesis and infection control.
    Virji M
    Nat Rev Microbiol; 2009 Apr; 7(4):274-86. PubMed ID: 19287450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Meningococcal Cysteine Transport System Plays a Crucial Role in
    Takahashi H; Watanabe H; Kim KS; Yokoyama S; Yanagisawa T
    mBio; 2018 Dec; 9(6):. PubMed ID: 30538184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Host cell-derived lactate functions as an effector molecule in Neisseria meningitidis microcolony dispersal.
    Sigurlásdóttir S; Engman J; Eriksson OS; Saroj SD; Zguna N; Lloris-Garcerá P; Ilag LL; Jonsson AB
    PLoS Pathog; 2017 Apr; 13(4):e1006251. PubMed ID: 28384279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular and biological analysis of eight genetic islands that distinguish Neisseria meningitidis from the closely related pathogen Neisseria gonorrhoeae.
    Klee SR; Nassif X; Kusecek B; Merker P; Beretti JL; Achtman M; Tinsley CR
    Infect Immun; 2000 Apr; 68(4):2082-95. PubMed ID: 10722605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship of pili to colonial morphology among pathogenic and nonpathogenic species of Neisseria.
    McGee ZA; Dourmashkin RR; Gross JG; Clark JB; Taylor-Robinson D
    Infect Immun; 1977 Feb; 15(2):594-600. PubMed ID: 403140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitors of macrophage infectivity potentiator-like PPIases affect neisserial and chlamydial pathogenicity.
    Reimer A; Seufert F; Weiwad M; Ebert J; Bzdyl NM; Kahler CM; Sarkar-Tyson M; Holzgrabe U; Rudel T; Kozjak-Pavlovic V
    Int J Antimicrob Agents; 2016 Oct; 48(4):401-8. PubMed ID: 27516227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Where does Neisseria acquire foreign DNA from: an examination of the source of genomic and pathogenic islands and the evolution of the Neisseria genus.
    Putonti C; Nowicki B; Shaffer M; Fofanov Y; Nowicki S
    BMC Evol Biol; 2013 Sep; 13():184. PubMed ID: 24007216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PilC of Neisseria meningitidis is involved in class II pilus formation and restores pilus assembly, natural transformation competence and adherence to epithelial cells in PilC-deficient gonococci.
    Ryll RR; Rudel T; Scheuerpflug I; Barten R; Meyer TF
    Mol Microbiol; 1997 Mar; 23(5):879-92. PubMed ID: 9076726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A potential role for the major iron-regulated protein expressed by pathogenic Neisseria species.
    Morse SA; Chen CY; LeFaou A; Mietzner TA
    Rev Infect Dis; 1988; 10 Suppl 2():S306-10. PubMed ID: 3142015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptidoglycan fragment release from Neisseria meningitidis.
    Woodhams KL; Chan JM; Lenz JD; Hackett KT; Dillard JP
    Infect Immun; 2013 Sep; 81(9):3490-8. PubMed ID: 23836824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neisseria genes required for persistence identified via in vivo screening of a transposon mutant library.
    Rhodes KA; Ma MC; Rendón MA; So M
    PLoS Pathog; 2022 May; 18(5):e1010497. PubMed ID: 35580146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of
    Rouquette-Loughlin CE; Zalucki YM; Dhulipala VL; Balthazar JT; Doyle RG; Nicholas RA; Begum AA; Raterman EL; Jerse AE; Shafer WM
    mBio; 2017 Apr; 8(2):. PubMed ID: 28400529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defenses against oxidative stress in Neisseria gonorrhoeae and Neisseria meningitidis: distinctive systems for different lifestyles.
    Seib KL; Tseng HJ; McEwan AG; Apicella MA; Jennings MP
    J Infect Dis; 2004 Jul; 190(1):136-47. PubMed ID: 15195253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of the meningococcal adhesin NadA is controlled by a transcriptional regulator of the MarR family.
    Schielke S; Huebner C; Spatz C; Nägele V; Ackermann N; Frosch M; Kurzai O; Schubert-Unkmeir A
    Mol Microbiol; 2009 May; 72(4):1054-67. PubMed ID: 19400792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of mucosal invasion by pathogenic Neisseria.
    McGee ZA; Stephens DS; Hoffman LH; Schlech WF; Horn RG
    Rev Infect Dis; 1983; 5 Suppl 4():S708-14. PubMed ID: 6415784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Population genomics: diversity and virulence in the Neisseria.
    Maiden MC
    Curr Opin Microbiol; 2008 Oct; 11(5):467-71. PubMed ID: 18822386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.