These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 20380142)

  • 41. Sustainable biodegradation of phenol by immobilized Bacillus sp. SAS19 with porous carbonaceous gels as carriers.
    Ke Q; Zhang Y; Wu X; Su X; Wang Y; Lin H; Mei R; Zhang Y; Hashmi MZ; Chen C; Chen J
    J Environ Manage; 2018 Sep; 222():185-189. PubMed ID: 29843091
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biodegradation of phenol and 4-chlorophenol by the yeast Candida tropicalis.
    Jiang Y; Wen J; Lan L; Hu Z
    Biodegradation; 2007 Dec; 18(6):719-29. PubMed ID: 17245562
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Experimental observations on the effect of added dispersing agent on phenol biodegradation in a microporous membrane bioreactor.
    Juang RS; Chung TP; Wang ML; Lee DJ
    J Hazard Mater; 2008 Mar; 151(2-3):746-52. PubMed ID: 17658217
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinetics of growth and multi substrate degradation by an indigenous mixed microbial culture isolated from a wastewater treatment plant in Guwahati, India.
    Saravanan P; Pakshirajan K; Saha PK
    Water Sci Technol; 2008; 58(5):1101-6. PubMed ID: 18824810
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biodegradation characteristics and bioaugmentation potential of a novel quinoline-degrading strain of Bacillus sp. isolated from petroleum-contaminated soil.
    Tuo BH; Yan JB; Fan BA; Yang ZH; Liu JZ
    Bioresour Technol; 2012 Mar; 107():55-60. PubMed ID: 22243925
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phenol biodegradation by the thermoacidophilic archaeon Sulfolobus solfataricus 98/2 in a fed-batch bioreactor.
    Christen P; Davidson S; Combet-Blanc Y; Auria R
    Biodegradation; 2011 Jun; 22(3):475-84. PubMed ID: 20886261
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Isolation and identification of phenol-degrading strains and the application in biotreatment of phenol-containing wastewater].
    Ren HS; Wang Y; Zhao HB; Cai BL
    Huan Jing Ke Xue; 2008 Feb; 29(2):482-7. PubMed ID: 18613524
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biodegradation of phenol using Corynebacterium sp. DJ1 aerobic granules.
    Ho KL; Lin B; Chen YY; Lee DJ
    Bioresour Technol; 2009 Nov; 100(21):5051-5. PubMed ID: 19540750
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enrichment and isolation of a mixed bacterial culture for complete mineralization of endosulfan.
    Kumar M; Philip L
    J Environ Sci Health B; 2006; 41(1):81-96. PubMed ID: 16393897
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biodegradation of catechol (2-hydroxy phenol) bearing wastewater in an UASB reactor.
    Subramanyam R; Mishra IM
    Chemosphere; 2007 Oct; 69(5):816-24. PubMed ID: 17561229
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Aerobic biodegradation of 3-chlorophenol in a sequencing batch reactor: effect of cometabolism.
    Chiavola A; Baciocchi R; Irvine RL; Gavasci R; Sirini P
    Water Sci Technol; 2004; 50(10):235-42. PubMed ID: 15656318
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biodegradation of carbofuran in soils within Nzoia River Basin, Kenya.
    Onunga DO; Kowino IO; Ngigi AN; Osogo A; Orata F; Getenga ZM; Were H
    J Environ Sci Health B; 2015; 50(6):387-97. PubMed ID: 25844859
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nutrients and culture conditions requirements for the degradation of phenol by Rhodococcus UKMP-5M.
    Suhaila YN; Rosfarizan M; Ahmad SA; Abdul Latif I; Ariff AB
    J Environ Biol; 2013 May; 34(3):635-43. PubMed ID: 24617152
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Degradation of phenol via ortho-pathway by Kocuria sp. strain TIBETAN4 isolated from the soils around Qinghai Lake in China.
    Wu L; Ali DC; Liu P; Peng C; Zhai J; Wang Y; Ye B
    PLoS One; 2018; 13(6):e0199572. PubMed ID: 29949643
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts.
    Margesin R; Fonteyne PA; Redl B
    Res Microbiol; 2005; 156(1):68-75. PubMed ID: 15636749
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Alkane utilization by Rhodococcus strain NTU-1 alone and in its natural association with Bacillus fusiformis L-1 and Ochrobactrum sp.
    Sayavedra-Soto LA; Chang WN; Lin TK; Ho CL; Liu HS
    Biotechnol Prog; 2006; 22(5):1368-73. PubMed ID: 17022676
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Isolation and characterization of phenol-degrading yeasts from an oil refinery wastewater in Brazil.
    Rocha LL; de Aguiar Cordeiro R; Cavalcante RM; do Nascimento RF; Martins SC; Santaella ST; Melo VM
    Mycopathologia; 2007 Oct; 164(4):183-8. PubMed ID: 17674140
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular Identification and Characterization of
    Ahmad N; Ali GM; Khan MR
    Iran J Biotechnol; 2020 Jan; 18(1):e2275. PubMed ID: 32884957
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of soluble microbial products (SMP) derived from glucose and phenol in dual substrate activated sludge bioreactors.
    Magbanua BS; Bowers AR
    Biotechnol Bioeng; 2006 Apr; 93(5):862-70. PubMed ID: 16402386
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Effect of Fe and Fe/Ni nanoparticles on the biodegradation of phenol by BFN at different pH values].
    Kuang Y; Zhou Y; Wang QP; Chen ZL
    Huan Jing Ke Xue; 2012 Sep; 33(9):3160-6. PubMed ID: 23243874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.