BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

808 related articles for article (PubMed ID: 20380376)

  • 21. Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism.
    Zhang X; Lin S; Chen Z; Megharaj M; Naidu R
    Water Res; 2011 May; 45(11):3481-8. PubMed ID: 21529878
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanistic investigations of Se(VI) treatment in anoxic groundwater using granular iron and organic carbon: an EXAFS study.
    Gibson BD; Blowes DW; Lindsay MB; Ptacek CJ
    J Hazard Mater; 2012 Nov; 241-242():92-100. PubMed ID: 23040313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution.
    Dong H; Zhang C; Deng J; Jiang Z; Zhang L; Cheng Y; Hou K; Tang L; Zeng G
    Water Res; 2018 May; 135():1-10. PubMed ID: 29438739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reactivity characteristics of poly(methyl methacrylate) coated nanoscale iron particles for trichloroethylene remediation.
    Wang W; Zhou M; Jin Z; Li T
    J Hazard Mater; 2010 Jan; 173(1-3):724-30. PubMed ID: 19773119
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface arsenic speciation of a drinking-water treatment residual using X-ray absorption spectroscopy.
    Makris KC; Sarkar D; Parsons JG; Datta R; Gardea-Torresdey JL
    J Colloid Interface Sci; 2007 Jul; 311(2):544-50. PubMed ID: 17448489
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron.
    Rajajayavel SR; Ghoshal S
    Water Res; 2015 Jul; 78():144-53. PubMed ID: 25935369
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite.
    Burton ED; Johnston SG; Watling K; Bush RT; Keene AF; Sullivan LA
    Environ Sci Technol; 2010 Mar; 44(6):2016-21. PubMed ID: 20148551
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron.
    Shi LN; Zhang X; Chen ZL
    Water Res; 2011 Jan; 45(2):886-92. PubMed ID: 20950833
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils.
    Katsenovich YP; Miralles-Wilhelm FR
    Sci Total Environ; 2009 Sep; 407(18):4986-93. PubMed ID: 19570566
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone (PVP-K30) modified nanoscale zero valent iron.
    Chen H; Luo H; Lan Y; Dong T; Hu B; Wang Y
    J Hazard Mater; 2011 Aug; 192(1):44-53. PubMed ID: 21571434
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer.
    Bennett P; He F; Zhao D; Aiken B; Feldman L
    J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Groundwater geochemical constituents controlling the reductive dechlorination of TCE by nZVI: Evidence from diverse anaerobic corrosion mechanisms of nZVI.
    Yang X; Zhang C; Liu F; Tang J
    Chemosphere; 2021 Jan; 262():127707. PubMed ID: 32755691
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The reactivity of well-dispersed zerovalent iron nanoparticles toward pentachlorophenol in water.
    Tso CP; Shih YH
    Water Res; 2015 Apr; 72():372-80. PubMed ID: 25575963
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new insight on the core-shell structure of zerovalent iron nanoparticles and its application for Pb(II) sequestration.
    Zhang Y; Su Y; Zhou X; Dai C; Keller AA
    J Hazard Mater; 2013 Dec; 263 Pt 2():685-93. PubMed ID: 24231326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electromagnetic Induction of Zerovalent Iron (ZVI) Powder and Nanoscale Zerovalent Iron (NZVI) Particles Enhances Dechlorination of Trichloroethylene in Contaminated Groundwater and Soil: Proof of Concept.
    Phenrat T; Thongboot T; Lowry GV
    Environ Sci Technol; 2016 Jan; 50(2):872-80. PubMed ID: 26654836
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene.
    Yan J; Han L; Gao W; Xue S; Chen M
    Bioresour Technol; 2015 Jan; 175():269-74. PubMed ID: 25459832
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removing arsenic from synthetic groundwater with iron electrocoagulation: an Fe and As K-edge EXAFS study.
    van Genuchten CM; Addy SE; Peña J; Gadgil AJ
    Environ Sci Technol; 2012 Jan; 46(2):986-94. PubMed ID: 22132945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water.
    Yan W; Herzing AA; Kiely CJ; Zhang WX
    J Contam Hydrol; 2010 Nov; 118(3-4):96-104. PubMed ID: 20889228
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flame synthesis of nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O catalysts for the water-gas shift (WGS) reaction.
    Pati RK; Lee IC; Hou S; Akhuemonkhan O; Gaskell KJ; Wang Q; Frenkel AI; Chu D; Salamanca-Riba LG; Ehrman SH
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2624-35. PubMed ID: 20356136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 41.