These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
416 related articles for article (PubMed ID: 20380475)
1. Si:WO(3) Sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Righettoni M; Tricoli A; Pratsinis SE Anal Chem; 2010 May; 82(9):3581-7. PubMed ID: 20380475 [TBL] [Abstract][Full Text] [Related]
2. Selective diagnosis of diabetes using Pt-functionalized WO3 hemitube networks as a sensing layer of acetone in exhaled breath. Choi SJ; Lee I; Jang BH; Youn DY; Ryu WH; Park CO; Kim ID Anal Chem; 2013 Feb; 85(3):1792-6. PubMed ID: 23252728 [TBL] [Abstract][Full Text] [Related]
3. Breath acetone monitoring by portable Si:WO3 gas sensors. Righettoni M; Tricoli A; Gass S; Schmid A; Amann A; Pratsinis SE Anal Chim Acta; 2012 Aug; 738():69-75. PubMed ID: 22790702 [TBL] [Abstract][Full Text] [Related]
4. Au-modified three-dimensional In₂O₃ inverse opals: synthesis and improved performance for acetone sensing toward diagnosis of diabetes. Xing R; Li Q; Xia L; Song J; Xu L; Zhang J; Xie Y; Song H Nanoscale; 2015 Aug; 7(30):13051-60. PubMed ID: 26172336 [TBL] [Abstract][Full Text] [Related]
5. Toward portable breath acetone analysis for diabetes detection. Righettoni M; Tricoli A J Breath Res; 2011 Sep; 5(3):037109. PubMed ID: 21828897 [TBL] [Abstract][Full Text] [Related]
6. Understanding the Potential of WO₃ Based Sensors for Breath Analysis. Staerz A; Weimar U; Barsan N Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27801881 [TBL] [Abstract][Full Text] [Related]
7. Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO(2) nanofibers functionalized with reduced graphene oxide nanosheets. Choi SJ; Jang BH; Lee SJ; Min BK; Rothschild A; Kim ID ACS Appl Mater Interfaces; 2014 Feb; 6(4):2588-97. PubMed ID: 24456186 [TBL] [Abstract][Full Text] [Related]
8. Noninvasive Body Fat Burn Monitoring from Exhaled Acetone with Si-doped WO Güntner AT; Sievi NA; Theodore SJ; Gulich T; Kohler M; Pratsinis SE Anal Chem; 2017 Oct; 89(19):10578-10584. PubMed ID: 28891296 [TBL] [Abstract][Full Text] [Related]
9. Fast responding exhaled-breath sensors using WO3 hemitubes functionalized by graphene-based electronic sensitizers for diagnosis of diseases. Choi SJ; Fuchs F; Demadrille R; Grévin B; Jang BH; Lee SJ; Lee JH; Tuller HL; Kim ID ACS Appl Mater Interfaces; 2014 Jun; 6(12):9061-70. PubMed ID: 24844154 [TBL] [Abstract][Full Text] [Related]
10. Extremely sensitive and selective NO probe based on villi-like WO3 nanostructures for application to exhaled breath analyzers. Moon HG; Choi YR; Shim YS; Choi KI; Lee JH; Kim JS; Yoon SJ; Park HH; Kang CY; Jang HW ACS Appl Mater Interfaces; 2013 Nov; 5(21):10591-6. PubMed ID: 24090094 [TBL] [Abstract][Full Text] [Related]
11. Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization. Deng C; Zhang J; Yu X; Zhang W; Zhang X J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Oct; 810(2):269-75. PubMed ID: 15380724 [TBL] [Abstract][Full Text] [Related]
12. Application of membrane extraction with sorbent interface for breath analysis. Ma V; Lord H; Morley M; Pawliszyn J Methods Mol Biol; 2010; 610():451-68. PubMed ID: 20013195 [TBL] [Abstract][Full Text] [Related]
13. Measurement of breath acetone concentrations by selected ion flow tube mass spectrometry in type 2 diabetes. Storer M; Dummer J; Lunt H; Scotter J; McCartin F; Cook J; Swanney M; Kendall D; Logan F; Epton M J Breath Res; 2011 Dec; 5(4):046011. PubMed ID: 22134047 [TBL] [Abstract][Full Text] [Related]
14. MoO Dwivedi P; Dhanekar S; Das S Nanotechnology; 2018 Jul; 29(27):275503. PubMed ID: 29745370 [TBL] [Abstract][Full Text] [Related]
16. Nitrogen-doped tungsten oxide nanowires: low-temperature synthesis on Si, and electrical, optical, and field-emission properties. Chang MT; Chou LJ; Chueh YL; Lee YC; Hsieh CH; Chen CD; Lan YW; Chen LJ Small; 2007 Apr; 3(4):658-64. PubMed ID: 17315263 [TBL] [Abstract][Full Text] [Related]
17. Superior Acetone Selectivity in Gas Mixtures by Catalyst-Filtered Chemoresistive Sensors. Weber IC; Braun HP; Krumeich F; Güntner AT; Pratsinis SE Adv Sci (Weinh); 2020 Oct; 7(19):2001503. PubMed ID: 33042762 [TBL] [Abstract][Full Text] [Related]
18. Mixed Potential Type Acetone Sensor with Ultralow Detection Limit for Diabetic Ketosis Breath Analysis. Jiang L; Wang C; Fan T; Lv S; Pan S; Sun P; Zheng J; Zhang C; Liu F; Lu G ACS Sens; 2024 Jan; 9(1):464-473. PubMed ID: 38153408 [TBL] [Abstract][Full Text] [Related]
19. Diagnosis of diabetes by image detection of breath using gas-sensitive LAPS. Zhang Q; Wang P; Li J; Gao X Biosens Bioelectron; 2000 Aug; 15(5-6):249-56. PubMed ID: 11219736 [TBL] [Abstract][Full Text] [Related]
20. Comparative Study on the Preparation and Gas Sensing Properties of Reduced Graphene Oxide/SnO Kalidoss R; Umapathy S; Anandan R; Ganesh V; Sivalingam Y Anal Chem; 2019 Apr; 91(8):5116-5124. PubMed ID: 30869871 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]