BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 20380475)

  • 1. Si:WO(3) Sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis.
    Righettoni M; Tricoli A; Pratsinis SE
    Anal Chem; 2010 May; 82(9):3581-7. PubMed ID: 20380475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective diagnosis of diabetes using Pt-functionalized WO3 hemitube networks as a sensing layer of acetone in exhaled breath.
    Choi SJ; Lee I; Jang BH; Youn DY; Ryu WH; Park CO; Kim ID
    Anal Chem; 2013 Feb; 85(3):1792-6. PubMed ID: 23252728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breath acetone monitoring by portable Si:WO3 gas sensors.
    Righettoni M; Tricoli A; Gass S; Schmid A; Amann A; Pratsinis SE
    Anal Chim Acta; 2012 Aug; 738():69-75. PubMed ID: 22790702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Au-modified three-dimensional In₂O₃ inverse opals: synthesis and improved performance for acetone sensing toward diagnosis of diabetes.
    Xing R; Li Q; Xia L; Song J; Xu L; Zhang J; Xie Y; Song H
    Nanoscale; 2015 Aug; 7(30):13051-60. PubMed ID: 26172336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward portable breath acetone analysis for diabetes detection.
    Righettoni M; Tricoli A
    J Breath Res; 2011 Sep; 5(3):037109. PubMed ID: 21828897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the Potential of WO₃ Based Sensors for Breath Analysis.
    Staerz A; Weimar U; Barsan N
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27801881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO(2) nanofibers functionalized with reduced graphene oxide nanosheets.
    Choi SJ; Jang BH; Lee SJ; Min BK; Rothschild A; Kim ID
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2588-97. PubMed ID: 24456186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive Body Fat Burn Monitoring from Exhaled Acetone with Si-doped WO
    Güntner AT; Sievi NA; Theodore SJ; Gulich T; Kohler M; Pratsinis SE
    Anal Chem; 2017 Oct; 89(19):10578-10584. PubMed ID: 28891296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast responding exhaled-breath sensors using WO3 hemitubes functionalized by graphene-based electronic sensitizers for diagnosis of diseases.
    Choi SJ; Fuchs F; Demadrille R; Grévin B; Jang BH; Lee SJ; Lee JH; Tuller HL; Kim ID
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9061-70. PubMed ID: 24844154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extremely sensitive and selective NO probe based on villi-like WO3 nanostructures for application to exhaled breath analyzers.
    Moon HG; Choi YR; Shim YS; Choi KI; Lee JH; Kim JS; Yoon SJ; Park HH; Kang CY; Jang HW
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10591-6. PubMed ID: 24090094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization.
    Deng C; Zhang J; Yu X; Zhang W; Zhang X
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Oct; 810(2):269-75. PubMed ID: 15380724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of membrane extraction with sorbent interface for breath analysis.
    Ma V; Lord H; Morley M; Pawliszyn J
    Methods Mol Biol; 2010; 610():451-68. PubMed ID: 20013195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of breath acetone concentrations by selected ion flow tube mass spectrometry in type 2 diabetes.
    Storer M; Dummer J; Lunt H; Scotter J; McCartin F; Cook J; Swanney M; Kendall D; Logan F; Epton M
    J Breath Res; 2011 Dec; 5(4):046011. PubMed ID: 22134047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MoO
    Dwivedi P; Dhanekar S; Das S
    Nanotechnology; 2018 Jul; 29(27):275503. PubMed ID: 29745370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creating gold nanoprisms directly on quartz crystal microbalance electrodes for mercury vapor sensing.
    Sabri YM; Ippolito SJ; O'Mullane AP; Tardio J; Bansal V; Bhargava SK
    Nanotechnology; 2011 Jul; 22(30):305501. PubMed ID: 21719970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen-doped tungsten oxide nanowires: low-temperature synthesis on Si, and electrical, optical, and field-emission properties.
    Chang MT; Chou LJ; Chueh YL; Lee YC; Hsieh CH; Chen CD; Lan YW; Chen LJ
    Small; 2007 Apr; 3(4):658-64. PubMed ID: 17315263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superior Acetone Selectivity in Gas Mixtures by Catalyst-Filtered Chemoresistive Sensors.
    Weber IC; Braun HP; Krumeich F; Güntner AT; Pratsinis SE
    Adv Sci (Weinh); 2020 Oct; 7(19):2001503. PubMed ID: 33042762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mixed Potential Type Acetone Sensor with Ultralow Detection Limit for Diabetic Ketosis Breath Analysis.
    Jiang L; Wang C; Fan T; Lv S; Pan S; Sun P; Zheng J; Zhang C; Liu F; Lu G
    ACS Sens; 2024 Jan; 9(1):464-473. PubMed ID: 38153408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diagnosis of diabetes by image detection of breath using gas-sensitive LAPS.
    Zhang Q; Wang P; Li J; Gao X
    Biosens Bioelectron; 2000 Aug; 15(5-6):249-56. PubMed ID: 11219736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Study on the Preparation and Gas Sensing Properties of Reduced Graphene Oxide/SnO
    Kalidoss R; Umapathy S; Anandan R; Ganesh V; Sivalingam Y
    Anal Chem; 2019 Apr; 91(8):5116-5124. PubMed ID: 30869871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.