These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 20380839)

  • 1. Metal cofactors in the structure and activity of the fowlpox resolvase.
    Culyba MJ; Hwang Y; Hu JY; Minkah N; Ocwieja KE; Bushman FD
    J Mol Biol; 2010 May; 399(1):182-95. PubMed ID: 20380839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA binding and cleavage by the fowlpox virus resolvase.
    Culyba MJ; Hwang Y; Minkah N; Bushman FD
    J Biol Chem; 2009 Jan; 284(2):1190-201. PubMed ID: 19004818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and Metal Binding Properties of a Poxvirus Resolvase.
    Li H; Hwang Y; Perry K; Bushman F; Van Duyne GD
    J Biol Chem; 2016 May; 291(21):11094-104. PubMed ID: 27013661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights into the promiscuous DNA binding and broad substrate selectivity of fowlpox virus resolvase.
    Li N; Shi K; Rao T; Banerjee S; Aihara H
    Sci Rep; 2020 Jan; 10(1):393. PubMed ID: 31941902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA branch nuclease activity of vaccinia A22 resolvase.
    Culyba MJ; Minkah N; Hwang Y; Benhamou OM; Bushman FD
    J Biol Chem; 2007 Nov; 282(48):34644-52. PubMed ID: 17890227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quaternary structure and cleavage specificity of a poxvirus holliday junction resolvase.
    Garcia AD; Otero J; Lebowitz J; Schuck P; Moss B
    J Biol Chem; 2006 Apr; 281(17):11618-26. PubMed ID: 16513635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strand selection by the tyrosine recombinases.
    Lee L; Sadowski PD
    Prog Nucleic Acid Res Mol Biol; 2005; 80():1-42. PubMed ID: 16164971
    [No Abstract]   [Full Text] [Related]  

  • 8. Analysis of conserved basic residues associated with DNA binding (Arg69) and catalysis (Lys76) by the RusA holliday junction resolvase.
    Bolt EL; Sharples GJ; Lloyd RG
    J Mol Biol; 2000 Nov; 304(2):165-76. PubMed ID: 11080453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA cleavage by the A22R resolvase of vaccinia virus.
    Culyba MJ; Harrison JE; Hwang Y; Bushman FD
    Virology; 2006 Sep; 352(2):466-76. PubMed ID: 16781759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bulged DNA substrates for identifying poxvirus resolvase inhibitors.
    Culyba M; Hwang Y; Attar S; Madrid PB; Bupp J; Huryn D; Sanchez L; Grobler J; Miller MD; Bushman FD
    Nucleic Acids Res; 2012 Sep; 40(16):e124. PubMed ID: 22581770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure of Bacillus subtilis RecU Holliday junction resolvase and its role in substrate selection and sequence-specific cleavage.
    McGregor N; Ayora S; Sedelnikova S; Carrasco B; Alonso JC; Thaw P; Rafferty J
    Structure; 2005 Sep; 13(9):1341-51. PubMed ID: 16154091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural insights into sequence-dependent Holliday junction resolution by the chloroplast resolvase MOC1.
    Yan J; Hong S; Guan Z; He W; Zhang D; Yin P
    Nat Commun; 2020 Mar; 11(1):1417. PubMed ID: 32184398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of three aspartic acid residues essential for catalysis by the RusA holliday junction resolvase.
    Bolt EL; Sharples GJ; Lloyd RG
    J Mol Biol; 1999 Feb; 286(2):403-15. PubMed ID: 9973560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Holliday junction formation by the Borrelia burgdorferi telomere resolvase, ResT: implications for the origin of genome linearity.
    Kobryn K; Briffotaux J; Karpov V
    Mol Microbiol; 2009 Mar; 71(5):1117-30. PubMed ID: 19170885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The genome of fowlpox virus.
    Afonso CL; Tulman ER; Lu Z; Zsak L; Kutish GF; Rock DL
    J Virol; 2000 Apr; 74(8):3815-31. PubMed ID: 10729156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray structure of T4 endonuclease VII: a DNA junction resolvase with a novel fold and unusual domain-swapped dimer architecture.
    Raaijmakers H; Vix O; Törõ I; Golz S; Kemper B; Suck D
    EMBO J; 1999 Mar; 18(6):1447-58. PubMed ID: 10075917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determinants of product topology in a hybrid Cre-Tn3 resolvase site-specific recombination system.
    Kilbride EA; Burke ME; Boocock MR; Stark WM
    J Mol Biol; 2006 Jan; 355(2):185-95. PubMed ID: 16303133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recognition and manipulation of branched DNA by the RusA Holliday junction resolvase of Escherichia coli.
    Chan SN; Vincent SD; Lloyd RG
    Nucleic Acids Res; 1998 Apr; 26(7):1560-6. PubMed ID: 9512524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutational analysis of the Pyrococcus furiosus holliday junction resolvase hjc revealed functionally important residues for dimer formation, junction DNA binding, and cleavage activities.
    Komori K; Sakae S; Daiyasu H; Toh H; Morikawa K; Shinagawa H; Ishino Y
    J Biol Chem; 2000 Dec; 275(51):40385-91. PubMed ID: 11005813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic residues of the telomere resolvase ResT: a pattern similar to, but distinct from, tyrosine recombinases and type IB topoisomerases.
    Deneke J; Burgin AB; Wilson SL; Chaconas G
    J Biol Chem; 2004 Dec; 279(51):53699-706. PubMed ID: 15471873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.