BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 20381054)

  • 1. Influence of the zeta potential on the sorption and toxicity of iron oxide nanoparticles on S. cerevisiae and E. coli.
    Schwegmann H; Feitz AJ; Frimmel FH
    J Colloid Interface Sci; 2010 Jul; 347(1):43-8. PubMed ID: 20381054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the size and morphology of nanoparticle clusters driven by biomolecular recognition.
    Palacios-Alonso P; Sanz-de-Diego E; Peláez RP; Cortajarena AL; Teran FJ; Delgado-Buscalioni R
    Soft Matter; 2023 Nov; 19(46):8929-8944. PubMed ID: 37530392
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    He P; Guo J; Lei L; Jiang J; Li Q; Hu Z; Su B; Fu Z; Xie H
    RSC Adv; 2021 Apr; 11(25):15010-15016. PubMed ID: 35424050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron oxide nanoparticles induce oxidative stress, DNA damage, and caspase activation in the human breast cancer cell line.
    Alarifi S; Ali D; Alkahtani S; Alhader MS
    Biol Trace Elem Res; 2014 Jun; 159(1-3):416-24. PubMed ID: 24748114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Important Factors Affecting Induction of Cell Death, Oxidative Stress and DNA Damage by Nano- and Microplastic Particles In Vitro.
    Płuciennik K; Sicińska P; Misztal W; Bukowska B
    Cells; 2024 Apr; 13(9):. PubMed ID: 38727304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Making the connections: physical and electric interactions in biohybrid photosynthetic systems.
    Yang Y; Liu LN; Tian H; Cooper AI; Sprick RS
    Energy Environ Sci; 2023 Oct; 16(10):4305-4319. PubMed ID: 38013927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron Oxide Nanoparticles: Green Synthesis and Their Antimicrobial Activity.
    Zúñiga-Miranda J; Guerra J; Mueller A; Mayorga-Ramos A; Carrera-Pacheco SE; Barba-Ostria C; Heredia-Moya J; Guamán LP
    Nanomaterials (Basel); 2023 Nov; 13(22):. PubMed ID: 37999273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-electrostatic interactions associated with aggregate formation between polyallylamine and Escherichia coli.
    Nakatsuji M; Sato N; Sakamoto S; Watanabe K; Teruuchi Y; Takeuchi M; Inui T; Ishihara H
    Sci Rep; 2023 Sep; 13(1):14793. PubMed ID: 37684326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The characteristics of nano-micron calcite particles/common bacteria complex and its interfacial interaction.
    Zhao Y; Yang Y; Dong F; Dai Q
    Environ Sci Pollut Res Int; 2023 Jun; 30(28):72807-72820. PubMed ID: 37178294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A whole cell fluorescence quenching-based approach for the investigation of polyethyleneimine functionalized silver nanoparticles interaction with
    Tiwari AK; Gupta MK; Narayan RJ; Pandey PC
    Front Microbiol; 2023; 14():1131122. PubMed ID: 36925472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial Natural Hydrogels in Biomedicine: Properties, Applications, and Challenges-A Concise Review.
    Kapusta O; Jarosz A; Stadnik K; Giannakoudakis DA; Barczyński B; Barczak M
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophobic soot nanoparticles as a non-cytotoxic motility activator of human spermatozoa.
    Esmeryan KD; Rangelov I; Chaushev TA
    Nanoscale Adv; 2022 Jun; 4(13):2806-2815. PubMed ID: 36132011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental Fate and Toxicity of Sunscreen-Derived Inorganic Ultraviolet Filters in Aquatic Environments: A Review.
    Yuan S; Huang J; Jiang X; Huang Y; Zhu X; Cai Z
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35215026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Synthesis Methodology of PEGylated Fe
    Kędzierska M; Potemski P; Drabczyk A; Kudłacik-Kramarczyk S; Głąb M; Grabowska B; Mierzwiński D; Tyliszczak B
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33804671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibacterial Activity of Positively and Negatively Charged Hematite (
    Vihodceva S; Šutka A; Sihtmäe M; Rosenberg M; Otsus M; Kurvet I; Smits K; Bikse L; Kahru A; Kasemets K
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33800165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal Nanoparticles for Improving Bactericide Functionality of Usual Fibers.
    Frolov G; Lyagin I; Senko O; Stepanov N; Pogorelsky I; Efremenko E
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32878095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ZnO nanoparticles modulate the ionic transport and voltage regulation of lysenin nanochannels.
    Bryant SL; Eixenberger JE; Rossland S; Apsley H; Hoffmann C; Shrestha N; McHugh M; Punnoose A; Fologea D
    J Nanobiotechnology; 2017 Dec; 15(1):90. PubMed ID: 29246155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticles Suitable for BCAA Isolation Can Serve for Use in Magnetic Lipoplex-Based Delivery System for L, I, V, or R-rich Antimicrobial Peptides.
    Vesely R; Jelinkova P; Hegerova D; Cernei N; Kopel P; Moulick A; Richtera L; Heger Z; Adam V; Zitka O
    Materials (Basel); 2016 Mar; 9(4):. PubMed ID: 28773383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavior and Potential Impacts of Metal-Based Engineered Nanoparticles in Aquatic Environments.
    Peng C; Zhang W; Gao H; Li Y; Tong X; Li K; Zhu X; Wang Y; Chen Y
    Nanomaterials (Basel); 2017 Jan; 7(1):. PubMed ID: 28336855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical Concentration of Lecithin Enhances the Antimicrobial Activity of Eugenol against Escherichia coli.
    Zhang H; Dudley EG; Davidson PM; Harte F
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28213539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.