BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 20381343)

  • 1. Degradation of triclosan by an integrated nano-bio redox process.
    Bokare V; Murugesan K; Kim YM; Jeon JR; Kim EJ; Chang YS
    Bioresour Technol; 2010 Aug; 101(16):6354-60. PubMed ID: 20381343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Fe-Pd bimetallic nanoparticles on Sphingomonas sp. PH-07 and a nano-bio hybrid process for triclosan degradation.
    Murugesan K; Bokare V; Jeon JR; Kim EJ; Kim JH; Chang YS
    Bioresour Technol; 2011 May; 102(10):6019-25. PubMed ID: 21429741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced transformation of triclosan by laccase in the presence of redox mediators.
    Murugesan K; Chang YY; Kim YM; Jeon JR; Kim EJ; Chang YS
    Water Res; 2010 Jan; 44(1):298-308. PubMed ID: 19854464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laccase- and electrochemically mediated conversion of triclosan: Metabolite formation and influence on antibacterial activity.
    Jahangiri E; Seiwert B; Reemtsma T; Schlosser D
    Chemosphere; 2017 Feb; 168():549-558. PubMed ID: 27842719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of triclosan under aerobic, anoxic, and anaerobic conditions.
    Gangadharan Puthiya Veetil P; Vijaya Nadaraja A; Bhasi A; Khan S; Bhaskaran K
    Appl Biochem Biotechnol; 2012 Jul; 167(6):1603-12. PubMed ID: 22328252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The transformation of triclosan by laccase: Effect of humic acid on the reaction kinetics, products and pathway.
    Dou RN; Wang JH; Chen YC; Hu YY
    Environ Pollut; 2018 Mar; 234():88-95. PubMed ID: 29172042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conjugation of laccase from the white rot fungus Trametes versicolor to chitosan and its utilization for the elimination of triclosan.
    Cabana H; Ahamed A; Leduc R
    Bioresour Technol; 2011 Jan; 102(2):1656-62. PubMed ID: 20951581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of triclosan by ferrate: reaction kinetics, products identification and toxicity evaluation.
    Yang B; Ying GG; Zhao JL; Zhang LJ; Fang YX; Nghiem LD
    J Hazard Mater; 2011 Feb; 186(1):227-35. PubMed ID: 21093982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photocatalytic oxidation of triclosan.
    Yu JC; Kwong TY; Luo Q; Cai Z
    Chemosphere; 2006 Oct; 65(3):390-9. PubMed ID: 16571361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elimination and detoxification of triclosan by manganese peroxidase from white rot fungus.
    Inoue Y; Hata T; Kawai S; Okamura H; Nishida T
    J Hazard Mater; 2010 Aug; 180(1-3):764-7. PubMed ID: 20434837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triclosan in waste and surface waters from the upper Detroit River by liquid chromatography-electrospray-tandem quadrupole mass spectrometry.
    Hua W; Bennett ER; Letcher RJ
    Environ Int; 2005 Jul; 31(5):621-30. PubMed ID: 15910958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reductive degradation of nitrobenzene in aqueous solution by zero-valent iron.
    Mu Y; Yu HQ; Zheng JC; Zhang SJ; Sheng GP
    Chemosphere; 2004 Feb; 54(7):789-94. PubMed ID: 14637335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time detection and identification of aqueous chlorine transformation products using QTOF MS.
    Vanderford BJ; Mawhinney DB; Rosario-Ortiz FL; Snyder SA
    Anal Chem; 2008 Jun; 80(11):4193-9. PubMed ID: 18465880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of triclosan, triclocarban and methyl-triclosan in aqueous samples by dispersive liquid-liquid microextraction combined with rapid liquid chromatography.
    Guo JH; Li XH; Cao XL; Li Y; Wang XZ; Xu XB
    J Chromatogr A; 2009 Apr; 1216(15):3038-43. PubMed ID: 19249787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid chromatography/time-of-flight mass spectrometric analyses for the elucidation of the photodegradation products of triclosan in wastewater samples.
    Ferrer I; Mezcua M; Gómez MJ; Thurman EM; Agüera A; Hernando MD; Fernández-Alba AR
    Rapid Commun Mass Spectrom; 2004; 18(4):443-50. PubMed ID: 14966851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of bromo-substituted triclosan during chlorination by chlorine in the presence of trace levels of bromide.
    Inaba K; Doi T; Isobe N; Yamamoto T
    Water Res; 2006 Aug; 40(15):2931-7. PubMed ID: 16844186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transformation of Triclosan by Fe(III)-saturated montmorillonite.
    Liyanapatirana C; Gwaltney SR; Xia K
    Environ Sci Technol; 2010 Jan; 44(2):668-74. PubMed ID: 20000674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bilirubin degradation by uncoupled cytochrome P450. Comparison with a chemical oxidation system and characterization of the products by high-performance liquid chromatography/electrospray ionization mass spectrometry.
    De Matteis F; Lord GA; Kee Lim C; Pons N
    Rapid Commun Mass Spectrom; 2006; 20(8):1209-17. PubMed ID: 16541400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of a laccase mediator ABTS as studied by ESI-FTICR mass spectrometry.
    Marjasvaara A; Jänis J; Vainiotalo P
    J Mass Spectrom; 2008 Apr; 43(4):470-7. PubMed ID: 17975855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dechlorination of chlorinated methanes by Pd/Fe bimetallic nanoparticles.
    Wang X; Chen C; Chang Y; Liu H
    J Hazard Mater; 2009 Jan; 161(2-3):815-23. PubMed ID: 18513856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.