These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 20382102)
1. Development of a high-throughput fluorescence polarization assay for the discovery of phosphopantetheinyl transferase inhibitors. Duckworth BP; Aldrich CC Anal Biochem; 2010 Aug; 403(1-2):13-9. PubMed ID: 20382102 [TBL] [Abstract][Full Text] [Related]
2. Fluorescent techniques for discovery and characterization of phosphopantetheinyl transferase inhibitors. Kosa NM; Foley TL; Burkart MD J Antibiot (Tokyo); 2014 Jan; 67(1):113-20. PubMed ID: 24192555 [TBL] [Abstract][Full Text] [Related]
4. Chapter 10 using phosphopantetheinyl transferases for enzyme posttranslational activation, site specific protein labeling and identification of natural product biosynthetic gene clusters from bacterial genomes. Sunbul M; Zhang K; Yin J Methods Enzymol; 2009; 458():255-75. PubMed ID: 19374986 [TBL] [Abstract][Full Text] [Related]
5. A high-throughput, homogeneous, fluorescence resonance energy transfer-based assay for phospho-N-acetylmuramoyl-pentapeptide translocase (MraY). Shapiro AB; Jahić H; Gao N; Hajec L; Rivin O J Biomol Screen; 2012 Jun; 17(5):662-72. PubMed ID: 22337656 [TBL] [Abstract][Full Text] [Related]
6. The phosphopantetheinyl transferase KirP activates the ACP and PCP domains of the kirromycin NRPS/PKS of Streptomyces collinus Tü 365. Pavlidou M; Pross EK; Musiol EM; Kulik A; Wohlleben W; Weber T FEMS Microbiol Lett; 2011 Jun; 319(1):26-33. PubMed ID: 21401713 [TBL] [Abstract][Full Text] [Related]
7. A strategy to discover inhibitors of Bacillus subtilis surfactin-type phosphopantetheinyl transferase. Yasgar A; Foley TL; Jadhav A; Inglese J; Burkart MD; Simeonov A Mol Biosyst; 2010 Feb; 6(2):365-75. PubMed ID: 20094656 [TBL] [Abstract][Full Text] [Related]
8. The nonredundant roles of two 4'-phosphopantetheinyl transferases in vital processes of Mycobacteria. Chalut C; Botella L; de Sousa-D'Auria C; Houssin C; Guilhot C Proc Natl Acad Sci U S A; 2006 May; 103(22):8511-6. PubMed ID: 16709676 [TBL] [Abstract][Full Text] [Related]
9. Gene cloning, expression and functional characterization of a phosphopantetheinyl transferase from Vibrio anguillarum serotype O1. Liu Q; Ma Y; Zhou L; Zhang Y Arch Microbiol; 2005 Jan; 183(1):37-44. PubMed ID: 15551118 [TBL] [Abstract][Full Text] [Related]
10. Development of filtration-based time-resolved fluorescence assay for the high-throughput screening of urotensin II receptor antagonist. Oh KS; Lee S; Lee BH Assay Drug Dev Technol; 2011 Oct; 9(5):514-21. PubMed ID: 21561377 [TBL] [Abstract][Full Text] [Related]
11. Evidence for a novel phosphopantetheinyl transferase domain in the polyketide synthase for enediyne biosynthesis. Murugan E; Liang ZX FEBS Lett; 2008 Apr; 582(7):1097-103. PubMed ID: 18319060 [TBL] [Abstract][Full Text] [Related]
12. Structure, biochemistry, and inhibition of essential 4'-phosphopantetheinyl transferases from two species of Mycobacteria. Vickery CR; Kosa NM; Casavant EP; Duan S; Noel JP; Burkart MD ACS Chem Biol; 2014 Sep; 9(9):1939-44. PubMed ID: 24963544 [TBL] [Abstract][Full Text] [Related]
13. High-throughput discovery of Mycobacterium tuberculosis protein tyrosine phosphatase B (MptpB) inhibitors using click chemistry. Tan LP; Wu H; Yang PY; Kalesh KA; Zhang X; Hu M; Srinivasan R; Yao SQ Org Lett; 2009 Nov; 11(22):5102-5. PubMed ID: 19852491 [TBL] [Abstract][Full Text] [Related]
14. A homogeneous resonance energy transfer assay for phosphopantetheinyl transferase. Foley TL; Burkart MD Anal Biochem; 2009 Nov; 394(1):39-47. PubMed ID: 19573516 [TBL] [Abstract][Full Text] [Related]
15. Screening for antibacterial inhibitors of the UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) using a high-throughput mass spectrometry assay. Langsdorf EF; Malikzay A; Lamarr WA; Daubaras D; Kravec C; Zhang R; Hart R; Monsma F; Black T; Ozbal CC; Miesel L; Lunn CA J Biomol Screen; 2010 Jan; 15(1):52-61. PubMed ID: 20019290 [TBL] [Abstract][Full Text] [Related]
16. Development of a high-throughput fluorescence polarization DNA cleavage assay for the identification of FEN1 inhibitors. McWhirter C; Tonge M; Plant H; Hardern I; Nissink W; Durant ST J Biomol Screen; 2013 Jun; 18(5):567-75. PubMed ID: 23427045 [TBL] [Abstract][Full Text] [Related]
17. A functional screen for recovery of 4'-phosphopantetheinyl transferase and associated natural product biosynthesis genes from metagenome libraries. Owen JG; Robins KJ; Parachin NS; Ackerley DF Environ Microbiol; 2012 May; 14(5):1198-209. PubMed ID: 22356582 [TBL] [Abstract][Full Text] [Related]
18. High-throughput fluorescence polarization method for identifying ligands of LOX-1. Zhang TT; Huang ZT; Dai Y; Chen XP; Zhu P; Du GH Acta Pharmacol Sin; 2006 Apr; 27(4):447-52. PubMed ID: 16539845 [TBL] [Abstract][Full Text] [Related]
19. The expression of recombinant human LOX-1 and identifying its mimic ligands by fluorescence polarization-based high throughput screening. Zhang T; Huang Z; Dai Y; Chen X; Zhu P; Du G J Biotechnol; 2006 Oct; 125(4):492-502. PubMed ID: 16735073 [TBL] [Abstract][Full Text] [Related]
20. A rapid, homogeneous, fluorescence polarization binding assay for peroxisome proliferator-activated receptors alpha and gamma using a fluorescein-tagged dual PPARalpha/gamma activator. Seethala R; Golla R; Ma Z; Zhang H; O'Malley K; Lippy J; Cheng L; Mookhtiar K; Farrelly D; Zhang L; Hariharan N; Cheng PT Anal Biochem; 2007 Apr; 363(2):263-74. PubMed ID: 17335769 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]