These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 20382385)

  • 1. Functionally interpretable local coordinate systems for the upper extremity using inertial & magnetic measurement systems.
    de Vries WH; Veeger HE; Cutti AG; Baten C; van der Helm FC
    J Biomech; 2010 Jul; 43(10):1983-8. PubMed ID: 20382385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Joint kinematics estimate using wearable inertial and magnetic sensing modules.
    Picerno P; Cereatti A; Cappozzo A
    Gait Posture; 2008 Nov; 28(4):588-95. PubMed ID: 18502130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motion-derived coordinate systems reduce inter-subject variability of elbow flexion kinematics.
    Ferreira LM; King GJ; Johnson JA
    J Orthop Res; 2011 Apr; 29(4):596-601. PubMed ID: 20957744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A framework for the definition of standardized protocols for measuring upper-extremity kinematics.
    Kontaxis A; Cutti AG; Johnson GR; Veeger HE
    Clin Biomech (Bristol, Avon); 2009 Mar; 24(3):246-53. PubMed ID: 19200628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anatomical frame identification and reconstruction for repeatable lower limb joint kinematics estimates.
    Donati M; Camomilla V; Vannozzi G; Cappozzo A
    J Biomech; 2008 Jul; 41(10):2219-26. PubMed ID: 18550066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A technique for locating the center of mass and principal axes of the lower limb.
    Verstraete MC
    Med Sci Sports Exerc; 1992 Jul; 24(7):825-31. PubMed ID: 1501569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bottom-up estimation of joint moments during manual lifting using orientation sensors instead of position sensors.
    Faber GS; Kingma I; van Dieën JH
    J Biomech; 2010 May; 43(7):1432-6. PubMed ID: 20189574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete 3D kinematics of upper extremity functional tasks.
    van Andel CJ; Wolterbeek N; Doorenbosch CA; Veeger DH; Harlaar J
    Gait Posture; 2008 Jan; 27(1):120-7. PubMed ID: 17459709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new kinematic model of the upper extremity based on functional joint parameter determination for shoulder and elbow.
    Rettig O; Fradet L; Kasten P; Raiss P; Wolf SI
    Gait Posture; 2009 Nov; 30(4):469-76. PubMed ID: 19651514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of individual joint contributions to multijoint position reproduction acuity in overhead-throwing athletes.
    Tripp BL; Uhl TL; Mattacola CG; Srinivasan C; Shapiro R
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):466-73. PubMed ID: 16481079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation.
    Roetenberg D; Luinge HJ; Baten CT; Veltink PH
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):395-405. PubMed ID: 16200762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model-based approach for human kinematics reconstruction from markerless and marker-based motion analysis systems.
    Sholukha V; Bonnechere B; Salvia P; Moiseev F; Rooze M; Van Sint Jan S
    J Biomech; 2013 Sep; 46(14):2363-71. PubMed ID: 23972432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of upper extremity kinematics estimation using a subject-specific forearm model implemented in a kinematic chain.
    Fohanno V; Lacouture P; Colloud F
    J Biomech; 2013 Apr; 46(6):1053-9. PubMed ID: 23481420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for estimating subject-specific body segment inertial parameters in human movement analysis.
    Chen SC; Hsieh HJ; Lu TW; Tseng CH
    Gait Posture; 2011 Apr; 33(4):695-700. PubMed ID: 21458993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of three standard anatomical reference frames for the tibia-fibula complex.
    Conti G; Cristofolini L; Juszczyk M; Leardini A; Viceconti M
    J Biomech; 2008 Dec; 41(16):3384-9. PubMed ID: 18995859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A functional axis based upper extremity model and associated calibration procedures.
    MacWilliams BA; Sardelli MC; Tashjian RZ
    Gait Posture; 2010 Feb; 31(2):289-91. PubMed ID: 19944607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual musculo-skeletal model for the biomechanical analysis of the upper limb.
    Pennestrì E; Stefanelli R; Valentini PP; Vita L
    J Biomech; 2007; 40(6):1350-61. PubMed ID: 16824531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-trial anatomical frame alignment procedure for comparison of 3D joint angle measurement from magnetic/inertial measurement units and camera-based systems.
    Li Q; Zhang JT
    Physiol Meas; 2014 Nov; 35(11):2255-68. PubMed ID: 25340557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint rotation between two attitudes in the spherical rotation coordinate system.
    Cheng PL
    J Biomech; 2004 Oct; 37(10):1475-82. PubMed ID: 15336921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a 3D object registration method for analysis of humeral kinematics.
    Bobrowitsch E; Imhauser C; Graichen H; Dürselen L
    J Biomech; 2007; 40(3):511-8. PubMed ID: 16624318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.