These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 20382402)
41. New Insights Into Sunflower ( Aznar-Moreno JA; Sánchez R; Gidda SK; Martínez-Force E; Moreno-Pérez AJ; Venegas Calerón M; Garcés R; Mullen RT; Salas JJ Front Plant Sci; 2018; 9():1496. PubMed ID: 30459777 [TBL] [Abstract][Full Text] [Related]
42. Only one of the two annotated Lactococcus lactis fabG genes encodes a functional beta-ketoacyl-acyl carrier protein reductase. Wang H; Cronan JE Biochemistry; 2004 Sep; 43(37):11782-9. PubMed ID: 15362862 [TBL] [Abstract][Full Text] [Related]
43. Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Burgal J; Shockey J; Lu C; Dyer J; Larson T; Graham I; Browse J Plant Biotechnol J; 2008 Oct; 6(8):819-31. PubMed ID: 18643899 [TBL] [Abstract][Full Text] [Related]
44. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity. Jing F; Cantu DC; Tvaruzkova J; Chipman JP; Nikolau BJ; Yandeau-Nelson MD; Reilly PJ BMC Biochem; 2011 Aug; 12():44. PubMed ID: 21831316 [TBL] [Abstract][Full Text] [Related]
45. Identification and Functional Characterization of Acyl-ACP Thioesterases B (GhFatBs) Responsible for Palmitic Acid Accumulation in Cotton Seeds. Liu B; Sun Y; Wang X; Xue J; Wang J; Jia X; Li R Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361594 [TBL] [Abstract][Full Text] [Related]
46. Cloning of a palmitoyl-acyl carrier protein thioesterase from oil palm. Othman A; Lazarus C; Fraser T; Stobart K Biochem Soc Trans; 2000 Dec; 28(6):619-22. PubMed ID: 11171146 [TBL] [Abstract][Full Text] [Related]
47. Metabolic control analysis of de novo sunflower fatty acid biosynthesis. Martínez-Force E; Garcés R Biochem Soc Trans; 2000 Dec; 28(6):669-71. PubMed ID: 11171164 [TBL] [Abstract][Full Text] [Related]
48. Disruption of plastid acyl:acyl carrier protein synthetases increases medium chain fatty acid accumulation in seeds of transgenic Arabidopsis. Tjellström H; Strawsine M; Silva J; Cahoon EB; Ohlrogge JB FEBS Lett; 2013 Apr; 587(7):936-42. PubMed ID: 23454211 [TBL] [Abstract][Full Text] [Related]
49. Computational identification and phylogenetic analysis of the oil-body structural proteins, oleosin and caleosin, in castor bean and flax. Hyun TK; Kumar D; Cho YY; Hyun HN; Kim JS Gene; 2013 Feb; 515(2):454-60. PubMed ID: 23232356 [TBL] [Abstract][Full Text] [Related]
50. Tissue-specific differences in metabolites and transcripts contribute to the heterogeneity of ricinoleic acid accumulation in Ricinus communis L. (castor) seeds. Sturtevant D; Romsdahl TB; Yu XH; Burks DJ; Azad RK; Shanklin J; Chapman KD Metabolomics; 2019 Jan; 15(1):6. PubMed ID: 30830477 [TBL] [Abstract][Full Text] [Related]
51. Identification of amino acid residues involved in substrate specificity of plant acyl-ACP thioesterases using a bioinformatics-guided approach. Mayer KM; Shanklin J BMC Plant Biol; 2007 Jan; 7():1. PubMed ID: 17201914 [TBL] [Abstract][Full Text] [Related]
52. A determinant of substrate specificity predicted from the acyl-acyl carrier protein desaturase of developing cat's claw seed. Cahoon EB; Shah S; Shanklin J; Browse J Plant Physiol; 1998 Jun; 117(2):593-8. PubMed ID: 9625712 [TBL] [Abstract][Full Text] [Related]
54. Polyamines are essential for the synthesis of 2-ricinoleoyl phosphatidic acid in developing seeds of castor. Tomosugi M; Ichihara K; Saito K Planta; 2006 Jan; 223(2):349-58. PubMed ID: 16133210 [TBL] [Abstract][Full Text] [Related]
55. Genomic Characterization and Expressional Profiles of Autophagy-Related Genes ( Han B; Xu H; Feng Y; Xu W; Cui Q; Liu A Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31952322 [TBL] [Abstract][Full Text] [Related]
56. Induction, purification and characterisation of acyl-ACP thioesterase from developing seeds of oil seed rape (Brassica napus). Hellyer A; Leadlay PF; Slabas AR Plant Mol Biol; 1992 Dec; 20(5):763-80. PubMed ID: 1301073 [TBL] [Abstract][Full Text] [Related]
57. A small phospholipase A2-α from castor catalyzes the removal of hydroxy fatty acids from phosphatidylcholine in transgenic Arabidopsis seeds. Bayon S; Chen G; Weselake RJ; Browse J Plant Physiol; 2015 Apr; 167(4):1259-70. PubMed ID: 25667315 [TBL] [Abstract][Full Text] [Related]
58. Genome-wide identification and analysis of soybean acyl-ACP thioesterase gene family reveals the role of GmFAT to improve fatty acid composition in soybean seed. Zhou Z; Lakhssassi N; Knizia D; Cullen MA; El Baz A; Embaby MG; Liu S; Badad O; Vuong TD; AbuGhazaleh A; Nguyen HT; Meksem K Theor Appl Genet; 2021 Nov; 134(11):3611-3623. PubMed ID: 34319424 [TBL] [Abstract][Full Text] [Related]
59. Characterization of a palmitoyl-acyl carrier protein thioesterase (FatB1) in cotton. Pirtle RM; Yoder DW; Huynh TT; Nampaisansuk M; Pirtle IL; Chapman KD Plant Cell Physiol; 1999 Feb; 40(2):155-63. PubMed ID: 10202811 [TBL] [Abstract][Full Text] [Related]
60. Splice Variants of the Castor WRI1 Gene Upregulate Fatty Acid and Oil Biosynthesis When Expressed in Tobacco Leaves. Ji XJ; Mao X; Hao QT; Liu BL; Xue JA; Li RZ Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29303957 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]