These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 20382406)
1. Phosphorus load estimation in the Saginaw River, MI using a Bayesian hierarchical/multilevel model. Cha Y; Stow CA; Reckhow KH; DeMarchi C; Johengen TH Water Res; 2010 May; 44(10):3270-82. PubMed ID: 20382406 [TBL] [Abstract][Full Text] [Related]
2. Improving uncertain nutrient load estimates for Lake Balaton. Clement A Water Sci Technol; 2001; 43(7):279-86. PubMed ID: 11385858 [TBL] [Abstract][Full Text] [Related]
3. Polybrominated diphenyl ethers and polybrominated biphenyls in sediment and floodplain soils of the Saginaw River watershed, Michigan, USA. Yun SH; Addink R; McCabe JM; Ostaszewski A; Mackenzie-Taylor D; Taylor AB; Kannan K Arch Environ Contam Toxicol; 2008 Jul; 55(1):1-10. PubMed ID: 18049786 [TBL] [Abstract][Full Text] [Related]
4. The relative contribution of sewage and diffuse phosphorus sources in the River Avon catchment, southern England: implications for nutrient management. Bowes MJ; Hilton J; Irons GP; Hornby DD Sci Total Environ; 2005 May; 344(1-3):67-81. PubMed ID: 15907511 [TBL] [Abstract][Full Text] [Related]
5. Bayesian model for flow-class dependent distributions of fecal-indicator bacterial concentration in surface waters. Schoen ME; Small MJ; Vanbriesen JM Water Res; 2010 Feb; 44(3):1006-16. PubMed ID: 19931885 [TBL] [Abstract][Full Text] [Related]
6. Water quality modeling for load reduction under uncertainty: a Bayesian approach. Liu Y; Yang P; Hu C; Guo H Water Res; 2008 Jul; 42(13):3305-14. PubMed ID: 18486961 [TBL] [Abstract][Full Text] [Related]
7. A Bayesian changepoint-threshold model to examine the effect of TMDL implementation on the flow-nitrogen concentration relationship in the Neuse River basin. Alameddine I; Qian SS; Reckhow KH Water Res; 2011 Jan; 45(1):51-62. PubMed ID: 20800259 [TBL] [Abstract][Full Text] [Related]
8. [Meta-analysis of the Italian studies on short-term effects of air pollution]. Biggeri A; Bellini P; Terracini B; Epidemiol Prev; 2001; 25(2 Suppl):1-71. PubMed ID: 11515188 [TBL] [Abstract][Full Text] [Related]
9. Combined Bayesian statistics and load duration curve method for bacteria nonpoint source loading estimation. Shen J; Zhao Y Water Res; 2010 Jan; 44(1):77-84. PubMed ID: 19781737 [TBL] [Abstract][Full Text] [Related]
10. A low cost method to estimate dissolved reactive phosphorus loads of rivers and streams. Müller B; Stöckli A; Stierli R; Butscher E; Gächter R J Environ Monit; 2007 Jan; 9(1):82-6. PubMed ID: 17213946 [TBL] [Abstract][Full Text] [Related]
11. A Bayesian approach for estimating bacterial nonpoint source loading in an estuary with limited observations. Shen J; Zhao Y J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Dec; 44(14):1574-84. PubMed ID: 20183516 [TBL] [Abstract][Full Text] [Related]
12. Hierarchical Bayesian sparse image reconstruction with application to MRFM. Dobigeon N; Hero AO; Tourneret JY IEEE Trans Image Process; 2009 Sep; 18(9):2059-70. PubMed ID: 19493849 [TBL] [Abstract][Full Text] [Related]
13. Considerations on the influence of extreme events on the phosphorus transport from river catchments to the sea. Zessner M; Postolache C; Clement A; Kovacs A; Strauss P Water Sci Technol; 2005; 51(11):193-204. PubMed ID: 16114633 [TBL] [Abstract][Full Text] [Related]
14. A low-tech, low-cost passive sampler for the long-term monitoring of phosphate loads in rivers and streams. Müller B; Stierli R; Gächter R J Environ Monit; 2008 Jul; 10(7):817-20. PubMed ID: 18688448 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of regression methodology with low-frequency water quality sampling to estimate constituent loads for ephemeral watersheds in Texas. Toor GS; Harmel RD; Haggard BE; Schmidt G J Environ Qual; 2008; 37(5):1847-54. PubMed ID: 18689746 [TBL] [Abstract][Full Text] [Related]
16. Changes of the nutrient loads of the Danube since the late eighties: An analysis based on long term changes along the whole Danube River and its main tributaries. van Gils J; Behrendt H; Constantinescu A; Laszlo F; Popescu L Water Sci Technol; 2005; 51(11):205-12. PubMed ID: 16114634 [TBL] [Abstract][Full Text] [Related]
17. A Bayesian approach for determining the no effect concentration and hazardous concentration in ecotoxicology. Fox DR Ecotoxicol Environ Saf; 2010 Feb; 73(2):123-31. PubMed ID: 19836077 [TBL] [Abstract][Full Text] [Related]
18. Controlling for confounding in the presence of measurement error in hierarchical models: a Bayesian approach. Gryparis A; Coull BA; Schwartz J J Expo Sci Environ Epidemiol; 2007 Dec; 17 Suppl 2():S20-8. PubMed ID: 18079761 [TBL] [Abstract][Full Text] [Related]
19. Modeling phosphorus in the upper Etowah River basin: identifying sources under uncertainty. Lin Z; Radcliffe DE; Beck MB; Risse LM Water Sci Technol; 2007; 56(6):29-37. PubMed ID: 17898441 [TBL] [Abstract][Full Text] [Related]
20. A long-term view of nutrient transfers through the Seine river continuum. Billen G; Garnier J; Némery J; Sebilo M; Sferratore A; Barles S; Benoit P; Benoît M Sci Total Environ; 2007 Apr; 375(1-3):80-97. PubMed ID: 17239940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]