These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Genetics and epigenetics of the X chromosome. Morey C; Avner P Ann N Y Acad Sci; 2010 Dec; 1214():E18-33. PubMed ID: 21382199 [TBL] [Abstract][Full Text] [Related]
5. Epigenetic dynamics of imprinted X inactivation during early mouse development. Okamoto I; Otte AP; Allis CD; Reinberg D; Heard E Science; 2004 Jan; 303(5658):644-9. PubMed ID: 14671313 [TBL] [Abstract][Full Text] [Related]
6. [Regulation of higher order chromatin structure by RNA]. Murakami Y Tanpakushitsu Kakusan Koso; 2006 Dec; 51(16 Suppl):2456-62. PubMed ID: 17471963 [No Abstract] [Full Text] [Related]
7. Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Umlauf D; Goto Y; Cao R; Cerqueira F; Wagschal A; Zhang Y; Feil R Nat Genet; 2004 Dec; 36(12):1296-300. PubMed ID: 15516932 [TBL] [Abstract][Full Text] [Related]
8. Epigenetic aspects of X-chromosome dosage compensation. Park Y; Kuroda MI Science; 2001 Aug; 293(5532):1083-5. PubMed ID: 11498577 [TBL] [Abstract][Full Text] [Related]
9. Genomic and epigenomic approaches to the study of X chromosome inactivation. Valley CM; Willard HF Curr Opin Genet Dev; 2006 Jun; 16(3):240-5. PubMed ID: 16647845 [TBL] [Abstract][Full Text] [Related]
10. [Chromatin modifications during X-chromosome inactivation in female mammals]. Shevchenko AI; Pavlova SV; Dement'eva EV; Golubeva DV; Zakiian SM Genetika; 2006 Sep; 42(9):1225-34. PubMed ID: 17100090 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms of disease: epigenesis. Waggoner D Semin Pediatr Neurol; 2007 Mar; 14(1):7-14. PubMed ID: 17331879 [TBL] [Abstract][Full Text] [Related]
13. [Molecular mechanisms of X chromosome inactivation]. Sado T Tanpakushitsu Kakusan Koso; 2006 Dec; 51(16 Suppl):2471-7. PubMed ID: 17471965 [No Abstract] [Full Text] [Related]
14. [Establishment of epigenetic asymmetry in the zygote]. Nakamura T; Nakano T Tanpakushitsu Kakusan Koso; 2007 May; 52(5):434-40. PubMed ID: 17491324 [No Abstract] [Full Text] [Related]
15. [Inheritance of RNA-directed epigenetic modifications of chromatin]. Tomilin NV Tsitologiia; 2009; 51(4):291-6. PubMed ID: 19505045 [TBL] [Abstract][Full Text] [Related]
16. The control of histone lysine methylation in epigenetic regulation. Völkel P; Angrand PO Biochimie; 2007 Jan; 89(1):1-20. PubMed ID: 16919862 [TBL] [Abstract][Full Text] [Related]
17. Changes in allele-specific association of histone modifications at the imprinting control regions during mouse preimplantation development. Kim JM; Ogura A Genesis; 2009 Sep; 47(9):611-6. PubMed ID: 19530139 [TBL] [Abstract][Full Text] [Related]
18. Evidence for de novo imprinted X-chromosome inactivation independent of meiotic inactivation in mice. Okamoto I; Arnaud D; Le Baccon P; Otte AP; Disteche CM; Avner P; Heard E Nature; 2005 Nov; 438(7066):369-73. PubMed ID: 16227973 [TBL] [Abstract][Full Text] [Related]
19. Examining histone acetlylation at specific genomic regions. Hu JF; Hoffman AR Methods Mol Biol; 2001; 181():285-96. PubMed ID: 12843458 [TBL] [Abstract][Full Text] [Related]
20. The MSL complex: X chromosome and beyond. Laverty C; Lucci J; Akhtar A Curr Opin Genet Dev; 2010 Apr; 20(2):171-8. PubMed ID: 20167472 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]