These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 20382553)

  • 1. Ultrasound with low intensity assisted the synthesis of nanocrystalline TiO2 without calcination.
    Ghows N; Entezari MH
    Ultrason Sonochem; 2010 Jun; 17(5):878-83. PubMed ID: 20382553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sol-gel low-temperature synthesis of stable anatase-type TiO2 nanoparticles under different conditions and its photocatalytic activity.
    Behnajady MA; Eskandarloo H; Modirshahla N; Shokri M
    Photochem Photobiol; 2011; 87(5):1002-8. PubMed ID: 21668867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The application of ultrasound radiation to the synthesis of nanocrystalline metal oxide in a non-aqueous solvent.
    Ohayon E; Gedanken A
    Ultrason Sonochem; 2010 Jan; 17(1):173-8. PubMed ID: 19524476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonically assisted hydrothermal synthesis of nanocrystalline ZrO2, TiO2, NiFe2O4 and Ni0.5Zn0.5Fe2O4 powders.
    Meskin PE; Ivanov VK; Barantchikov AE; Churagulov BR; Tretyakov YD
    Ultrason Sonochem; 2006 Jan; 13(1):47-53. PubMed ID: 16223687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast and easy synthesis of core-shell nanocrystal (CdS/TiO2) at low temperature by micro-emulsion under ultrasound.
    Ghows N; Entezari MH
    Ultrason Sonochem; 2011 Mar; 18(2):629-34. PubMed ID: 20801705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrothermal-hydrolysis synthesis and photocatalytic properties of nano-TiO2 with an adjustable crystalline structure.
    Zhang J; Xiao X; Nan J
    J Hazard Mater; 2010 Apr; 176(1-3):617-22. PubMed ID: 20004517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The large-scale synthesis of one-dimensional TiO2 nanostructures using palladium as catalyst at low temperature.
    Xia M; Zhang Q; Li H; Dai G; Yu H; Wang T; Zou B; Wang Y
    Nanotechnology; 2009 Feb; 20(5):055605. PubMed ID: 19417352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled synthesis of highly dispersed TiO2 nanoparticles using SBA-15 as hard template.
    Zhao L; Yu J
    J Colloid Interface Sci; 2006 Dec; 304(1):84-91. PubMed ID: 16989852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation on transition crystal of ordinary rutile TiO2 powder and its sonocatalytic activity.
    Wang J; Ma T; Zhang Z; Zhang X; Jiang Y; Zhang G; Zhao G; Zhao H; Zhang P
    Ultrason Sonochem; 2007 Feb; 14(2):246-52. PubMed ID: 16843695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A polyol-mediated synthesis of titania-based nanoparticles and their electrochemical properties.
    Kim DH; Kang JW; Kim TR; Kim EJ; Im JS; Kim J
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3954-8. PubMed ID: 18047095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of ultrahigh crystalline TiO2 nanotubes.
    Khan MA; Jung HT; Yang OB
    J Phys Chem B; 2006 Apr; 110(13):6626-30. PubMed ID: 16570964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The synthesis of aqueous-dispersible anatase TiO2 nanoplatelets.
    Shan GB; Demopoulos GP
    Nanotechnology; 2010 Jan; 21(2):025604. PubMed ID: 19955613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic cavitation induced water in vegetable oil emulsion droplets--a simple and easy technique to synthesize manganese zinc ferrite nanocrystals with improved magnetization.
    Sivakumar M; Towata A; Yasui K; Tuziuti T; Kozuka T; Iida Y; Maiorov MM; Blums E; Bhattacharya D; Sivakumar N; Ashok M
    Ultrason Sonochem; 2012 May; 19(3):652-8. PubMed ID: 22113061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Ti-O bonds in phase transitions of TiO2.
    Nosheen S; Galasso FS; Suib SL
    Langmuir; 2009 Jul; 25(13):7623-30. PubMed ID: 19453129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sonochemical synthesis of a new nano-structures bismuth(III) supramolecular compound: new precursor for the preparation of bismuth(III) oxide nano-rods and bismuth(III) iodide nano-wires.
    Soltanzadeh N; Morsali A
    Ultrason Sonochem; 2010 Jan; 17(1):139-44. PubMed ID: 19482504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A route for producing nano-CaRuO3 perovskite by combusting precursors prepared using reverse micelle synthesis.
    Jiao S; Kilby KT; Zhang L; Fray DJ
    Nanotechnology; 2009 Feb; 20(8):085606. PubMed ID: 19417454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser-assisted production of spherical TiO2 nanoparticles in water.
    Boutinguiza M; Rodríguez-González B; del Val J; Comesaña R; Lusquiños F; Pou J
    Nanotechnology; 2011 May; 22(19):195606. PubMed ID: 21430320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfactant-assisted synthesis and characterization of SrCrO4 nanostructures.
    Di C; Tang K; Zhang S; Zheng H; Qian Y
    J Nanosci Nanotechnol; 2006 Mar; 6(3):738-42. PubMed ID: 16573130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sono-synthesis of core-shell nanocrystal (CdS/TiO2) without surfactant.
    Ghows N; Entezari MH
    Ultrason Sonochem; 2012 Sep; 19(5):1070-8. PubMed ID: 22365027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple synthesis and size-dependent surface-enhanced Raman scattering of Ag nanostructures on TiO2 by thermal decomposition of silver nitrate at low temperature.
    Wang RC; Gao YS; Chen SJ
    Nanotechnology; 2009 Sep; 20(37):375605. PubMed ID: 19706939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.