BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 20382641)

  • 1. Changes in vascular and transpiration flows affect the seasonal and daily growth of kiwifruit (Actinidia deliciosa) berry.
    Morandi B; Manfrini L; Losciale P; Zibordi M; Corelli Grappadelli L
    Ann Bot; 2010 Jun; 105(6):913-23. PubMed ID: 20382641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vascular functioning and the water balance of ripening kiwifruit (Actinidia chinensis) berries.
    Clearwater MJ; Luo Z; Ong SE; Blattmann P; Thorp TG
    J Exp Bot; 2012 Mar; 63(5):1835-47. PubMed ID: 22155631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vascular flows and transpiration affect peach (Prunus persica Batsch.) fruit daily growth.
    Morandi B; Rieger M; Grappadelli LC
    J Exp Bot; 2007; 58(14):3941-7. PubMed ID: 18037679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing water stress negatively affects pear fruit growth by reducing first its xylem and then its phloem inflow.
    Morandi B; Losciale P; Manfrini L; Zibordi M; Anconelli S; Galli F; Pierpaoli E; Corelli Grappadelli L
    J Plant Physiol; 2014 Oct; 171(16):1500-9. PubMed ID: 25105235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydraulic resistance of developing Actinidia fruit.
    Mazzeo M; Dichio B; Clearwater MJ; Montanaro G; Xiloyannis C
    Ann Bot; 2013 Jul; 112(1):197-205. PubMed ID: 23658370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The positive effect of skin transpiration in peach fruit growth.
    Morandi B; Manfrini L; Losciale P; Zibordi M; Corelli-Grappadelli L
    J Plant Physiol; 2010 Sep; 167(13):1033-7. PubMed ID: 20417987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apoplasmic and simplasmic phloem unloading mechanisms: Do they co-exist in Angeleno plums under demanding environmental conditions?
    Corelli Grappadelli L; Morandi B; Manfrini L; O'Connell M
    J Plant Physiol; 2019 Jun; 237():104-110. PubMed ID: 31055228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydraulic responses of whole vines and individual roots of kiwifruit (Actinidia chinensis) following root severance.
    Black MZ; Patterson KJ; Minchin PE; Gould KS; Clearwater MJ
    Tree Physiol; 2011 May; 31(5):508-18. PubMed ID: 21636692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xylem, phloem and transpiration flows in developing European plums.
    Winkler A; Knoche M
    PLoS One; 2021; 16(5):e0252085. PubMed ID: 34015019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isohydric stomatal behaviour alters fruit vascular flows and minimizes fruit size reductions in drought-stressed 'Hass' avocado (Persea americana Mill.).
    Kaneko T; Gould N; Campbell D; Clearwater MJ
    Ann Bot; 2024 May; 133(7):969-982. PubMed ID: 38366557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of leaf gas exchange, xylem and phloem transport, water potential and carbohydrate concentration in a realistic 3-D model tree crown.
    Nikinmaa E; Sievänen R; Hölttä T
    Ann Bot; 2014 Sep; 114(4):653-66. PubMed ID: 24854169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fruit calcium accumulation coupled and uncoupled from its transpiration in kiwifruit.
    Montanaro G; Dichio B; Lang A; Mininni AN; Xiloyannis C
    J Plant Physiol; 2015 Jun; 181():67-74. PubMed ID: 25982084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An external heat pulse method for measurement of sap flow through fruit pedicels, leaf petioles and other small-diameter stems.
    Clearwater MJ; Luo Z; Mazzeo M; Dichio B
    Plant Cell Environ; 2009 Dec; 32(12):1652-63. PubMed ID: 19671100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High light decreases xylem contribution to fruit growth in tomato.
    Hanssens J; DE Swaef T; Steppe K
    Plant Cell Environ; 2015 Mar; 38(3):487-98. PubMed ID: 25039478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vigor-controlling rootstocks affect early shoot growth and leaf area development of kiwifruit.
    Clearwater MJ; Seleznyova AN; Thorp TG; Blattmann P; Barnett AM; Lowe RG; Austin PT
    Tree Physiol; 2006 Apr; 26(4):505-15. PubMed ID: 16414929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydraulic conductance and rootstock effects in grafted vines of kiwifruit.
    Clearwater MJ; Lowe RG; Hofstee BJ; Barclay C; Mandemaker AJ; Blattmann P
    J Exp Bot; 2004 Jun; 55(401):1371-82. PubMed ID: 15133051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sweet cherry water relations and fruit production efficiency are affected by rootstock vigor.
    Morandi B; Manfrini L; Lugli S; Tugnoli A; Boini A; Perulli GD; Bresilla K; Venturi M; Corelli Grappadelli L
    J Plant Physiol; 2019 Jun; 237():43-50. PubMed ID: 31022664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biophysical model of kiwifruit (Actinidia deliciosa) berry development.
    Hall AJ; Minchin PE; Clearwater MJ; Génard M
    J Exp Bot; 2013 Dec; 64(18):5473-83. PubMed ID: 24123250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sugar demand of ripening grape berries leads to recycling of surplus phloem water via the xylem.
    Keller M; Zhang Y; Shrestha PM; Biondi M; Bondada BR
    Plant Cell Environ; 2015 Jun; 38(6):1048-59. PubMed ID: 25293537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulating nectarine tree transpiration and dynamic water storage from responses of leaf conductance to light and sap flow to stem water potential and vapor pressure deficit.
    Paudel I; Naor A; Gal Y; Cohen S
    Tree Physiol; 2015 Apr; 35(4):425-38. PubMed ID: 25618897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.