These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 20382734)

  • 1. Single-molecule approaches to probe the structure, kinetics, and thermodynamics of nucleoprotein complexes that regulate transcription.
    Finzi L; Dunlap DD
    J Biol Chem; 2010 Jun; 285(25):18973-8. PubMed ID: 20382734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitation of the DNA tethering effect in long-range DNA looping in vivo and in vitro using the Lac and λ repressors.
    Priest DG; Cui L; Kumar S; Dunlap DD; Dodd IB; Shearwin KE
    Proc Natl Acad Sci U S A; 2014 Jan; 111(1):349-54. PubMed ID: 24344307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-molecule studies of RNA polymerase: motoring along.
    Herbert KM; Greenleaf WJ; Block SM
    Annu Rev Biochem; 2008; 77():149-76. PubMed ID: 18410247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lac and lambda repressors relieve silencing of the Escherichia coli bgl promoter. Activation by alteration of a repressing nucleoprotein complex.
    Caramel A; Schnetz K
    J Mol Biol; 1998 Dec; 284(4):875-83. PubMed ID: 9837711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supercoiling and denaturation in Gal repressor/heat unstable nucleoid protein (HU)-mediated DNA looping.
    Lia G; Bensimon D; Croquette V; Allemand JF; Dunlap D; Lewis DE; Adhya S; Finzi L
    Proc Natl Acad Sci U S A; 2003 Sep; 100(20):11373-7. PubMed ID: 14500788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of transcriptional repression at a bacterial promoter by analysis of single molecules.
    Sanchez A; Osborne ML; Friedman LJ; Kondev J; Gelles J
    EMBO J; 2011 Aug; 30(19):3940-6. PubMed ID: 21829165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy.
    Neuman KC; Nagy A
    Nat Methods; 2008 Jun; 5(6):491-505. PubMed ID: 18511917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA supercoiling enhances cooperativity and efficiency of an epigenetic switch.
    Norregaard K; Andersson M; Sneppen K; Nielsen PE; Brown S; Oddershede LB
    Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17386-91. PubMed ID: 24101469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemistry. Completing the view of transcriptional regulation.
    von Hippel PH
    Science; 2004 Jul; 305(5682):350-2. PubMed ID: 15256661
    [No Abstract]   [Full Text] [Related]  

  • 10. Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site.
    Frank DE; Saecker RM; Bond JP; Capp MW; Tsodikov OV; Melcher SE; Levandoski MM; Record MT
    J Mol Biol; 1997 Apr; 267(5):1186-206. PubMed ID: 9150406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A gamut of loops: meandering DNA.
    Semsey S; Virnik K; Adhya S
    Trends Biochem Sci; 2005 Jun; 30(6):334-41. PubMed ID: 15950878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-parameter measurements of conformational dynamics in nucleic acids and nucleoprotein complexes.
    Ivanov IE; Bryant Z
    Methods; 2019 Oct; 169():69-77. PubMed ID: 31228549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure, mechanics, and binding mode heterogeneity of LEDGF/p75-DNA nucleoprotein complexes revealed by scanning force microscopy.
    Vanderlinden W; Lipfert J; Demeulemeester J; Debyser Z; De Feyter S
    Nanoscale; 2014 May; 6(9):4611-9. PubMed ID: 24632996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical constraints and functional characteristics of transcription factor-DNA interaction.
    Gerland U; Moroz JD; Hwa T
    Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12015-20. PubMed ID: 12218191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single DNA molecule analysis of transcription complexes.
    Rivetti C; Guthold M
    Methods Enzymol; 2003; 371():34-50. PubMed ID: 14712690
    [No Abstract]   [Full Text] [Related]  

  • 16. Analysis of in-vivo LacR-mediated gene repression based on the mechanics of DNA looping.
    Zhang Y; McEwen AE; Crothers DM; Levene SD
    PLoS One; 2006 Dec; 1(1):e136. PubMed ID: 17205140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo tests of thermodynamic models of transcription repressor function.
    Tungtur S; Skinner H; Zhan H; Swint-Kruse L; Beckett D
    Biophys Chem; 2011 Nov; 159(1):142-51. PubMed ID: 21715082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional rules for lac repressor-operator associations and implications for protein-DNA interactions.
    Milk L; Daber R; Lewis M
    Protein Sci; 2010 Jun; 19(6):1162-72. PubMed ID: 20512969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The loopometer: a quantitative in vivo assay for DNA-looping proteins.
    Hao N; Sullivan AE; Shearwin KE; Dodd IB
    Nucleic Acids Res; 2021 Apr; 49(7):e39. PubMed ID: 33511418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA sequence-dependent mechanics and protein-assisted bending in repressor-mediated loop formation.
    Boedicker JQ; Garcia HG; Johnson S; Phillips R
    Phys Biol; 2013 Dec; 10(6):066005. PubMed ID: 24231252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.