BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 20382737)

  • 1. Involvement of SLC17A9-dependent vesicular exocytosis in the mechanism of ATP release during T cell activation.
    Tokunaga A; Tsukimoto M; Harada H; Moriyama Y; Kojima S
    J Biol Chem; 2010 Jun; 285(23):17406-16. PubMed ID: 20382737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autocrine regulation of macrophage activation via exocytosis of ATP and activation of P2Y11 receptor.
    Sakaki H; Tsukimoto M; Harada H; Moriyama Y; Kojima S
    PLoS One; 2013; 8(4):e59778. PubMed ID: 23577075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autocrine regulation of TGF-β1-induced cell migration by exocytosis of ATP and activation of P2 receptors in human lung cancer cells.
    Takai E; Tsukimoto M; Harada H; Sawada K; Moriyama Y; Kojima S
    J Cell Sci; 2012 Nov; 125(Pt 21):5051-60. PubMed ID: 22946048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pannexin-1 hemichannel-mediated ATP release together with P2X1 and P2X4 receptors regulate T-cell activation at the immune synapse.
    Woehrle T; Yip L; Elkhal A; Sumi Y; Chen Y; Yao Y; Insel PA; Junger WG
    Blood; 2010 Nov; 116(18):3475-84. PubMed ID: 20660288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of purinergic signaling in biliary epithelial cells by exocytosis of SLC17A9-dependent ATP-enriched vesicles.
    Sathe MN; Woo K; Kresge C; Bugde A; Luby-Phelps K; Lewis MA; Feranchak AP
    J Biol Chem; 2011 Jul; 286(28):25363-76. PubMed ID: 21613220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP release and autocrine signaling through P2X4 receptors regulate γδ T cell activation.
    Manohar M; Hirsh MI; Chen Y; Woehrle T; Karande AA; Junger WG
    J Leukoc Biol; 2012 Oct; 92(4):787-94. PubMed ID: 22753954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autocrine regulation of T-cell activation by ATP release and P2X7 receptors.
    Yip L; Woehrle T; Corriden R; Hirsh M; Chen Y; Inoue Y; Ferrari V; Insel PA; Junger WG
    FASEB J; 2009 Jun; 23(6):1685-93. PubMed ID: 19211924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent Labeling and Quantification of Vesicular ATP Release Using Live Cell Imaging.
    Vessey KA; Ho T; Jobling AI; Wang AY; Fletcher EL
    Methods Mol Biol; 2020; 2041():209-221. PubMed ID: 31646491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of lysosomal P2X4 by ATP transported into lysosomes via VNUT/SLC17A9 using V-ATPase generated voltage gradient as the driving force.
    Zhong XZ; Cao Q; Sun X; Dong XP
    J Physiol; 2016 Aug; 594(15):4253-66. PubMed ID: 27477609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a vesicular nucleotide transporter.
    Sawada K; Echigo N; Juge N; Miyaji T; Otsuka M; Omote H; Yamamoto A; Moriyama Y
    Proc Natl Acad Sci U S A; 2008 Apr; 105(15):5683-6. PubMed ID: 18375752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blockade of murine T cell activation by antagonists of P2Y6 and P2X7 receptors.
    Tsukimoto M; Tokunaga A; Harada H; Kojima S
    Biochem Biophys Res Commun; 2009 Jul; 384(4):512-8. PubMed ID: 19426712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SLC17A9 protein functions as a lysosomal ATP transporter and regulates cell viability.
    Cao Q; Zhao K; Zhong XZ; Zou Y; Yu H; Huang P; Xu TL; Dong XP
    J Biol Chem; 2014 Aug; 289(33):23189-23199. PubMed ID: 24962569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secretion of ATP from Schwann cells in response to uridine triphosphate.
    Liu GJ; Werry EL; Bennett MR
    Eur J Neurosci; 2005 Jan; 21(1):151-60. PubMed ID: 15654852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 5-Nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) stimulates cellular ATP release through exocytosis of ATP-enriched vesicles.
    Dolovcak S; Waldrop SL; Fitz JG; Kilic G
    J Biol Chem; 2009 Dec; 284(49):33894-903. PubMed ID: 19808682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LPS-mediated release of ATP from urothelial cells occurs by lysosomal exocytosis.
    Silberfeld A; Chavez B; Obidike C; Daugherty S; de Groat WC; Beckel JM
    Neurourol Urodyn; 2020 Jun; 39(5):1321-1329. PubMed ID: 32374925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypertonic stress regulates T cell function via pannexin-1 hemichannels and P2X receptors.
    Woehrle T; Yip L; Manohar M; Sumi Y; Yao Y; Chen Y; Junger WG
    J Leukoc Biol; 2010 Dec; 88(6):1181-9. PubMed ID: 20884646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca(2+) spiking activity caused by the activation of store-operated Ca(2+) channels mediates TNF-α release from microglial cells under chronic purinergic stimulation.
    Ikeda M; Tsuno S; Sugiyama T; Hashimoto A; Yamoto K; Takeuchi K; Kishi H; Mizuguchi H; Kohsaka SI; Yoshioka T
    Biochim Biophys Acta; 2013 Dec; 1833(12):2573-2585. PubMed ID: 23830920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secretion of IL-2 and IFN-gamma, but not IL-4, by antigen-specific T cells requires extracellular ATP.
    Langston HP; Ke Y; Gewirtz AT; Dombrowski KE; Kapp JA
    J Immunol; 2003 Mar; 170(6):2962-70. PubMed ID: 12626548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of connexin43 hemichannel in ATP release after γ-irradiation.
    Ohshima Y; Tsukimoto M; Harada H; Kojima S
    J Radiat Res; 2012 Jul; 53(4):551-7. PubMed ID: 22843620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signaling through P2X7 receptor in human T cells involves p56lck, MAP kinases, and transcription factors AP-1 and NF-kappa B.
    Budagian V; Bulanova E; Brovko L; Orinska Z; Fayad R; Paus R; Bulfone-Paus S
    J Biol Chem; 2003 Jan; 278(3):1549-60. PubMed ID: 12424250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.