These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 20382974)

  • 1. In situ electric fields causing electro-stimulation from conductor contact of charged human.
    Nagai T; Hirata A
    Radiat Prot Dosimetry; 2010 Aug; 140(4):351-6. PubMed ID: 20382974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dispersive FDTD analysis of induced electric field in human models due to electrostatic discharge.
    Hirata A; Nagai T; Koyama T; Hattori J; Chan KH; Kavet R
    Phys Med Biol; 2012 Jul; 57(13):4447-58. PubMed ID: 22713253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of electric fields induced in humans and rodents by 60-Hz contact currents.
    Dawson TW; Caputa K; Stuchly MA; Kavet R
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):744-53. PubMed ID: 12814241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric fields in the human body due to electrostatic discharges.
    Dawson TW; Stuchly MA; Kavet R
    IEEE Trans Biomed Eng; 2004 Aug; 51(8):1460-8. PubMed ID: 15311833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical dosimetry ELF: accuracy of the method, variability of models and parameters, and the implication for quantifying guidelines.
    Bahr A; Bolz T; Hennes C
    Health Phys; 2007 Jun; 92(6):521-30. PubMed ID: 17495652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peripheral nerve stimulation by gradient switching fields in magnetic resonance imaging.
    So PP; Stuchly MA; Nyenhuis JA
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):1907-14. PubMed ID: 15536892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the averaging volume and algorithm on the in situ electric field for uniform electric- and magnetic-field exposures.
    Hirata A; Takano Y; Kamimura Y; Fujiwara O
    Phys Med Biol; 2010 May; 55(9):N243-52. PubMed ID: 20393234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculated SAR distributions in a human voxel phantom due to the reflection of electromagnetic fields from a ground plane between 65 MHz and 2 GHz.
    Findlay RP; Dimbylow PJ
    Phys Med Biol; 2008 May; 53(9):2277-89. PubMed ID: 18401062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pilot measurements of ELF contact currents in some electric utility occupations.
    Bowman J; Niple J; Kavet R
    J Occup Environ Hyg; 2006 Jun; 3(6):323-33. PubMed ID: 16718950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The electric field induced in the brain by magnetic stimulation: a 3-D finite-element analysis of the effect of tissue heterogeneity and anisotropy.
    Miranda PC; Hallett M; Basser PJ
    IEEE Trans Biomed Eng; 2003 Sep; 50(9):1074-85. PubMed ID: 12943275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the induced electric field gradients in the human body for magnetic stimulation by gradient coils in MRI.
    Liu F; Zhao H; Crozier S
    IEEE Trans Biomed Eng; 2003 Jul; 50(7):804-15. PubMed ID: 12848348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical evaluation of currents induced in a worker by ELF non-uniform electric fields in high voltage substations and comparison with experimental results.
    Tarao H; Korpinen LH; Kuisti HA; Hayashi N; Elovaara JA; Isaka K
    Bioelectromagnetics; 2013 Jan; 34(1):61-73. PubMed ID: 22684733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of interactions of electric fields due to electrostatic discharge with human tissue.
    Dawson TW; Stuchly MA; Kavet R
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2194-8. PubMed ID: 15605868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric fields in bone marrow substructures at power-line frequencies.
    Chiu RS; Stuchly MA
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):1103-9. PubMed ID: 15977739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of employing model-based optimization of pulse amplitude and electrode distance for effective tumor electropermeabilization.
    Sel D; Lebar AM; Miklavcic D
    IEEE Trans Biomed Eng; 2007 May; 54(5):773-81. PubMed ID: 17518273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational dosimetry for grounded and ungrounded human models due to contact current.
    Chan KH; Hattori J; Laakso I; Hirata A; Taki M
    Phys Med Biol; 2013 Aug; 58(15):5153-72. PubMed ID: 23835790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of electric fields and currents induced in a millimeter-resolution human model at 60 Hz using the FDTD method.
    Furse CM; Gandhi OP
    Bioelectromagnetics; 1998; 19(5):293-9. PubMed ID: 9669543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational modelling of blood-flow-induced changes in blood electrical conductivity and its contribution to the impedance cardiogram.
    Trakic A; Akhand M; Wang H; Mason D; Liu F; Wilson S; Crozier S
    Physiol Meas; 2010 Jan; 31(1):13-33. PubMed ID: 19940342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The calculation of SAR from limb current in the female voxel phantom, NAOMI.
    Dimbylow PJ
    Radiat Prot Dosimetry; 2006; 121(3):236-9. PubMed ID: 16565198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comments on 'the discrepancy between human peripheral nerve chronaxie times as measured using magnetic and electric field stimuli: the relevance to MRI gradient coil safety'.
    Patrick Reilly J
    Phys Med Biol; 2010 Feb; 55(4):L5-8. PubMed ID: 20124652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.