These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 20382991)

  • 1. Know your dose: RADDOSE.
    Paithankar KS; Garman EF
    Acta Crystallogr D Biol Crystallogr; 2010 Apr; 66(Pt 4):381-8. PubMed ID: 20382991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doses for experiments with microbeams and microcrystals: Monte Carlo simulations in RADDOSE-3D.
    Dickerson JL; Garman EF
    Protein Sci; 2021 Jan; 30(1):8-19. PubMed ID: 32734633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental determination of the radiation dose limit for cryocooled protein crystals.
    Owen RL; Rudiño-Piñera E; Garman EF
    Proc Natl Acad Sci U S A; 2006 Mar; 103(13):4912-7. PubMed ID: 16549763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiation decay of thaumatin crystals at three X-ray energies.
    Liebschner D; Rosenbaum G; Dauter M; Dauter Z
    Acta Crystallogr D Biol Crystallogr; 2015 Apr; 71(Pt 4):772-8. PubMed ID: 25849388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimate your dose: RADDOSE-3D.
    Bury CS; Brooks-Bartlett JC; Walsh SP; Garman EF
    Protein Sci; 2018 Jan; 27(1):217-228. PubMed ID: 28921782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorbed dose calculations for macromolecular crystals: improvements to RADDOSE.
    Paithankar KS; Owen RL; Garman EF
    J Synchrotron Radiat; 2009 Mar; 16(Pt 2):152-62. PubMed ID: 19240327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential benefits of using higher X-ray energies for macromolecular crystallography.
    Dickerson JL; Garman EF
    J Synchrotron Radiat; 2019 Jul; 26(Pt 4):922-930. PubMed ID: 31274414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parameters affecting the X-ray dose absorbed by macromolecular crystals.
    Murray JW; Rudiño-Piñera E; Owen RL; Grininger M; Ravelli RB; Garman EF
    J Synchrotron Radiat; 2005 May; 12(Pt 3):268-75. PubMed ID: 15840910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental evidence for the benefits of higher X-ray energies for macromolecular crystallography.
    Storm SLS; Axford D; Owen RL
    IUCrJ; 2021 Nov; 8(Pt 6):896-904. PubMed ID: 34804543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dose dependence of radiation damage for protein crystals studied at various X-ray energies.
    Shimizu N; Hirata K; Hasegawa K; Ueno G; Yamamoto M
    J Synchrotron Radiat; 2007 Jan; 14(Pt 1):4-10. PubMed ID: 17211067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the X-ray lifetime of protein crystals.
    Zeldin OB; Brockhauser S; Bremridge J; Holton JM; Garman EF
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20551-6. PubMed ID: 24297937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absorbed dose in AgBr in direct film for photon energies ( < 150 keV): relation to optical density. Theoretical calculation and experimental evaluation.
    Helmrot E; Alm Carlsson G
    Acta Radiol Suppl; 1996; 402():1-50. PubMed ID: 8677807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Doses for X-ray and electron diffraction: New features in RADDOSE-3D including intensity decay models.
    Dickerson JL; McCubbin PTN; Brooks-Bartlett JC; Garman EF
    Protein Sci; 2024 Jul; 33(7):e5005. PubMed ID: 38923423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiation damage in macromolecular crystallography: what is it and why should we care?
    Garman EF
    Acta Crystallogr D Biol Crystallogr; 2010 Apr; 66(Pt 4):339-51. PubMed ID: 20382986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An All-in-one Sample Holder for Macromolecular X-ray Crystallography with Minimal Background Scattering.
    Feiler CG; Wallacher D; Weiss MS
    J Vis Exp; 2019 Jul; (149):. PubMed ID: 31329182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiation-damage investigation of a DNA 16-mer.
    Bugris V; Harmat V; Ferenc G; Brockhauser S; Carmichael I; Garman EF
    J Synchrotron Radiat; 2019 Jul; 26(Pt 4):998-1009. PubMed ID: 31274421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring energy-dependent photoelectron escape in microcrystals.
    Storm SLS; Crawshaw AD; Devenish NE; Bolton R; Hall DR; Tews I; Evans G
    IUCrJ; 2020 Jan; 7(Pt 1):129-135. PubMed ID: 31949913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absorbed dose calculations for macromolecular crystals: improvements to RADDOSE. Erratum.
    Paithankar KS; Owen RL; Garman EF
    J Synchrotron Radiat; 2018 Mar; 25(Pt 2):627-628. PubMed ID: 29488946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The beamlines of ELETTRA and their application to structural biology.
    Zanini F; Lausi A; Savoia A
    Genetica; 1999; 106(1-2):171-80. PubMed ID: 10710723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The optimum conditions to collect X-ray data from very small samples.
    Cowan JA; Nave C
    J Synchrotron Radiat; 2008 Sep; 15(Pt 5):458-62. PubMed ID: 18728316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.