BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 20383224)

  • 1. Postexercise heart rate recovery in children: relationship with power output, blood pH, and lactate.
    Buchheit M; Duché P; Laursen PB; Ratel S
    Appl Physiol Nutr Metab; 2010 Apr; 35(2):142-50. PubMed ID: 20383224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of age and recovery duration on peak power output during repeated cycling sprints.
    Ratel S; Bedu M; Hennegrave A; Doré E; Duché P
    Int J Sports Med; 2002 Aug; 23(6):397-402. PubMed ID: 12215957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of active and passive recovery on blood lactate and blood pH after a repeated sprint protocol in children and adults.
    Kappenstein J; Engel F; Fernández-Fernández J; Ferrauti A
    Pediatr Exerc Sci; 2015 Feb; 27(1):77-84. PubMed ID: 25387324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of upper-body muscle power after short intensive exercise: comparing boys and men.
    Weinstein Y; Inbar O; Mor-Unikovski R; Luder A; Dubnov-Raz G
    Eur J Appl Physiol; 2018 Aug; 118(8):1555-1564. PubMed ID: 29761312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of age and mode of exercise on power output profiles during repeated sprints.
    Ratel S; Williams CA; Oliver J; Armstrong N
    Eur J Appl Physiol; 2004 Jun; 92(1-2):204-10. PubMed ID: 15045504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The kinetics of blood lactate in boys during and following a single and repeated all-out sprints of cycling are different than in men.
    Engel FA; Sperlich B; Stockinger C; Härtel S; Bös K; Holmberg HC
    Appl Physiol Nutr Metab; 2015 Jun; 40(6):623-31. PubMed ID: 25942632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human power output during repeated sprint cycle exercise: the influence of thermal stress.
    Ball D; Burrows C; Sargeant AJ
    Eur J Appl Physiol Occup Physiol; 1999 Mar; 79(4):360-6. PubMed ID: 10090637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acid-base balance during repeated cycling sprints in boys and men.
    Ratel S; Duche P; Hennegrave A; Van Praagh E; Bedu M
    J Appl Physiol (1985); 2002 Feb; 92(2):479-85. PubMed ID: 11796654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of active recovery on power output during repeated maximal sprint cycling.
    Bogdanis GC; Nevill ME; Lakomy HK; Graham CM; Louis G
    Eur J Appl Physiol Occup Physiol; 1996; 74(5):461-9. PubMed ID: 8954294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human muscle power generating capability during cycling at different pedalling rates.
    Zoladz JA; Rademaker AC; Sargeant AJ
    Exp Physiol; 2000 Jan; 85(1):117-24. PubMed ID: 10662901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of recovery interventions on cycling performance and pacing strategy in the heat.
    De Pauw K; Roelands B; Vanparijs J; Meeusen R
    Int J Sports Physiol Perform; 2014 Mar; 9(2):240-8. PubMed ID: 24571917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of previous dynamic arm exercise on power output during repeated maximal sprint cycling.
    Bogdanis GC; Nevill ME; Lakomy HK
    J Sports Sci; 1994 Aug; 12(4):363-70. PubMed ID: 7932946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic consequences of β-alanine supplementation during exhaustive supramaximal cycling and 4000-m time-trial performance.
    Bellinger PM; Minahan CL
    Appl Physiol Nutr Metab; 2016 Aug; 41(8):864-71. PubMed ID: 27467218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal Robustness of the Session Rating of Perceived Exertion.
    Christen J; Foster C; Porcari JP; Mikat RP
    Int J Sports Physiol Perform; 2016 Nov; 11(8):1088-1093. PubMed ID: 26999454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle buffer capacity and aerobic fitness are associated with repeated-sprint ability in women.
    Bishop D; Edge J; Goodman C
    Eur J Appl Physiol; 2004 Aug; 92(4-5):540-7. PubMed ID: 15168128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. No improvement of repeated-sprint performance with dietary nitrate.
    Martin K; Smee D; Thompson KG; Rattray B
    Int J Sports Physiol Perform; 2014 Sep; 9(5):845-50. PubMed ID: 24436354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of voluntary and evoked muscle performance following intermittent-sprint exercise in the heat.
    Duffield R; King M; Skein M
    Int J Sports Physiol Perform; 2009 Jun; 4(2):254-68. PubMed ID: 19567928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of age and recovery duration on performance during multiple treadmill sprints.
    Ratel S; Williams CA; Oliver J; Armstrong N
    Int J Sports Med; 2006 Jan; 27(1):1-8. PubMed ID: 16388435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromuscular electrical stimulation: no enhancement of recovery from maximal exercise.
    Malone JK; Blake C; Caulfield B
    Int J Sports Physiol Perform; 2014 Sep; 9(5):791-7. PubMed ID: 24338058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of prior heavy-intensity exercise on oxygen uptake and muscle deoxygenation kinetics of a subsequent heavy-intensity cycling and knee-extension exercise.
    Cleland SM; Murias JM; Kowalchuk JM; Paterson DH
    Appl Physiol Nutr Metab; 2012 Feb; 37(1):138-48. PubMed ID: 22269026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.