These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 20383369)

  • 1. Quantitative assessment of dust propagation at a hazardous waste landfill: directional monitoring with elemental analysis.
    Fowler M; Datson H; Newberry J
    J Environ Monit; 2010 Apr; 12(4):879-89. PubMed ID: 20383369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elemental composition of urban street dusts and their dissolution characteristics in various aqueous media.
    Joshi UM; Vijayaraghavan K; Balasubramanian R
    Chemosphere; 2009 Oct; 77(4):526-33. PubMed ID: 19692111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field-testing a new directional passive air sampler for fugitive dust in a complex industrial source environment.
    Ferranti EJ; Fryer M; Sweetman AJ; Garcia MA; Timmis RJ
    Environ Sci Process Impacts; 2014 Jan; 16(1):159-68. PubMed ID: 24296778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of visible, near-infrared, and short-wave infrared (400-2500 nm) reflectance spectroscopy in quantitatively assessing settled dust in the indoor environment. Case study in dwellings and office environments.
    Chudnovsky A; Ben-Dor E
    Sci Total Environ; 2008 Apr; 393(2-3):198-213. PubMed ID: 18262224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A methodology for the determination of fugitive dust emissions from landfill sites.
    Chalvatzaki E; Glytsos T; Lazaridis M
    Int J Environ Health Res; 2015; 25(5):551-69. PubMed ID: 25563337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increase of platinum group element concentrations in soils and airborne dust in an urban area in Germany.
    Wichmann H; Anquandah GA; Schmidt C; Zachmann D; Bahadir MA
    Sci Total Environ; 2007 Dec; 388(1-3):121-7. PubMed ID: 17884143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of pH on the leaching behaviour of inorganic components from municipal solid waste APC residues.
    Quina MJ; Bordado JC; Quinta-Ferreira RM
    Waste Manag; 2009 Sep; 29(9):2483-93. PubMed ID: 19545989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SEMEDS: an important tool for air pollution bio-monitoring.
    Ram SS; Majumdar S; Chaudhuri P; Chanda S; Santra SC; Maiti PK; Sudarshan M; Chakraborty A
    Micron; 2012 Feb; 43(2-3):490-3. PubMed ID: 21813281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dust dispersal and Pb enrichment at the rare-metal Orlovka-Spokoinoe mining and ore processing site: insights from REE patterns and elemental ratios.
    Dolgopolova A; Weiss DJ; Seltmann R; Dulski P
    J Hazard Mater; 2006 Apr; 132(1):90-7. PubMed ID: 16427193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring metals near a hazardous waste incinerator. Temporal trend in soils and herbage.
    Ferré-Huguet N; Nadal M; Mari M; Schuhmacher M; Borrajo MA; Domingo JL
    Bull Environ Contam Toxicol; 2007 Aug; 79(2):130-4. PubMed ID: 17492387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative personal exposures to organic dusts and endotoxin.
    Simpson JC; Niven RM; Pickering CA; Oldham LA; Fletcher AM; Francis HC
    Ann Occup Hyg; 1999 Feb; 43(2):107-15. PubMed ID: 10206039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brominated flame retardants (BFRs) in air and dust from electronic waste storage facilities in Thailand.
    Muenhor D; Harrad S; Ali N; Covaci A
    Environ Int; 2010 Oct; 36(7):690-8. PubMed ID: 20605636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and application of a multi-channel monitoring system for near real-time VOC measurement in a hazardous waste management facility.
    Je CH; Stone R; Oberg SG
    Sci Total Environ; 2007 Sep; 382(2-3):364-74. PubMed ID: 17521707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Residential exposure summary methodology for a reproductive health study of multiple hazardous waste sites.
    Marshall EG; Geary NS; Cayo MR; Lauridsen PA
    J Expo Anal Environ Epidemiol; 1993; 3 Suppl 1():87-98. PubMed ID: 9857296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Free crystalline silica: a comparison of methods for its determination in total dust].
    Maciejewska A; Szadkowska-Stańczyk I; Kondratowicz G
    Med Pr; 2005; 56(1):1-8. PubMed ID: 15997999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ceiling (attic) dust: a "museum" of contamination and potential hazard.
    Davis JJ; Gulson BL
    Environ Res; 2005 Oct; 99(2):177-94. PubMed ID: 16194668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury in the topsoil and dust of Beijing City.
    Xinmin Z; Kunli L; Xinzhang S; Jian'an T; Yilun L
    Sci Total Environ; 2006 Sep; 368(2-3):713-22. PubMed ID: 16600334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China.
    Lu X; Wang L; Lei K; Huang J; Zhai Y
    J Hazard Mater; 2009 Jan; 161(2-3):1058-62. PubMed ID: 18502044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of dust samplers: statistical analysis techniques.
    Knight G; Moore E
    Am Ind Hyg Assoc J; 1987 Apr; 48(4):344-53. PubMed ID: 3591650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.