These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 20383560)

  • 61. Salinity tolerance in soybean is modulated by natural variation in GmSALT3.
    Guan R; Qu Y; Guo Y; Yu L; Liu Y; Jiang J; Chen J; Ren Y; Liu G; Tian L; Jin L; Liu Z; Hong H; Chang R; Gilliham M; Qiu L
    Plant J; 2014 Dec; 80(6):937-50. PubMed ID: 25292417
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fine-scale phylogenetic structure and major events in the history of the current wild soybean (Glycine soja) and taxonomic assignment of semi-wild type (Glycine gracilis Skvortz.) within the Chinese subgenus Soja.
    Wang KJ; Li XH; Liu Y
    J Hered; 2012; 103(1):13-27. PubMed ID: 21984661
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Heterologous expression of ApGSMT2 and ApDMT2 genes from Aphanothece halophytica enhanced drought tolerance in transgenic tobacco.
    He Y; He C; Li L; Liu Z; Yang A; Zhang J
    Mol Biol Rep; 2011 Jan; 38(1):657-66. PubMed ID: 20364325
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The soybean GH2/4 gene that encodes a glutathione S-transferase has a promoter that is activated by a wide range of chemical agents.
    Ulmasov T; Ohmiya A; Hagen G; Guilfoyle T
    Plant Physiol; 1995 Jul; 108(3):919-27. PubMed ID: 7630972
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Metabolomics and its physiological regulation process reveal the salt-tolerant mechanism in Glycine soja seedling roots.
    Jiao Y; Bai Z; Xu J; Zhao M; Khan Y; Hu Y; Shi L
    Plant Physiol Biochem; 2018 May; 126():187-196. PubMed ID: 29525442
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Overexpression of the formaldehyde dehydrogenase gene from Brevibacillus brevis to enhance formaldehyde tolerance and detoxification of tobacco.
    Nian H; Meng Q; Zhang W; Chen L
    Appl Biochem Biotechnol; 2013 Jan; 169(1):170-80. PubMed ID: 23160947
    [TBL] [Abstract][Full Text] [Related]  

  • 67. parB: an auxin-regulated gene encoding glutathione S-transferase.
    Takahashi Y; Nagata T
    Proc Natl Acad Sci U S A; 1992 Jan; 89(1):56-9. PubMed ID: 1729717
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Improved salt tolerance of transgenic tobacco expressing apoplastic yeast-derived invertase.
    Fukushima E; Arata Y; Endo T; Sonnewald U; Sato F
    Plant Cell Physiol; 2001 Feb; 42(2):245-9. PubMed ID: 11230581
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Natural variation in the promoter of GsERD15B affects salt tolerance in soybean.
    Jin T; Sun Y; Shan Z; He J; Wang N; Gai J; Li Y
    Plant Biotechnol J; 2021 Jun; 19(6):1155-1169. PubMed ID: 33368860
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A novel Glycine soja cysteine proteinase inhibitor GsCPI14, interacting with the calcium/calmodulin-binding receptor-like kinase GsCBRLK, regulated plant tolerance to alkali stress.
    Sun X; Yang S; Sun M; Wang S; Ding X; Zhu D; Ji W; Cai H; Zhao C; Wang X; Zhu Y
    Plant Mol Biol; 2014 May; 85(1-2):33-48. PubMed ID: 24407891
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The effects of methylglyoxal on glutathione S-transferase from Nicotiana tabacum.
    Hoque MA; Uraji M; Banu MN; Mori IC; Nakamura Y; Murata Y
    Biosci Biotechnol Biochem; 2010; 74(10):2124-6. PubMed ID: 20944411
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Proteins encoded by an auxin-regulated gene family of tobacco share limited but significant homology with glutathione S-transferases and one member indeed shows in vitro GST activity.
    Droog FN; Hooykaas PJ; Libbenga KR; van der Zaal EJ
    Plant Mol Biol; 1993 Mar; 21(6):965-72. PubMed ID: 8490142
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Genome-Wide Analysis of
    Hou Z; Li Y; Cheng Y; Li W; Li T; Du H; Kong F; Dong L; Zheng D; Feng N; Liu B; Cheng Q
    Front Plant Sci; 2022; 13():821647. PubMed ID: 35310639
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Comparative metabolomics in Glycine max and Glycine soja under salt stress to reveal the phenotypes of their offspring.
    Lu Y; Lam H; Pi E; Zhan Q; Tsai S; Wang C; Kwan Y; Ngai S
    J Agric Food Chem; 2013 Sep; 61(36):8711-21. PubMed ID: 23930713
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Comparison of Salt Tolerance in
    Li M; Guo R; Jiao Y; Jin X; Zhang H; Shi L
    Front Plant Sci; 2017; 8():1101. PubMed ID: 28690628
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Expression of the affinity tags, glutathione-S-transferase and maltose-binding protein, in tobacco chloroplasts.
    Ahmad N; Michoux F; McCarthy J; Nixon PJ
    Planta; 2012 Apr; 235(4):863-71. PubMed ID: 22237946
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Understanding drought tolerance in plants.
    Ahanger MA; Siddique KHM; Ahmad P
    Physiol Plant; 2021 Jun; 172(2):286-288. PubMed ID: 34046912
    [No Abstract]   [Full Text] [Related]  

  • 78. Hybrid identification for
    Li F; Liu X; Wu S; Luo Q; Yu B
    PeerJ; 2019; 7():e6483. PubMed ID: 30809456
    [No Abstract]   [Full Text] [Related]  

  • 79. Twenty years of mining salt tolerance genes in soybean.
    Leung HS; Chan LY; Law CH; Li MW; Lam HM
    Mol Breed; 2023 Jun; 43(6):45. PubMed ID: 37313223
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Unravelling the molecular mechanism underlying drought stress response in chickpea
    Singh V; Gupta K; Singh S; Jain M; Garg R
    Front Plant Sci; 2023; 14():1156606. PubMed ID: 37287713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.