BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 20384152)

  • 21. Development of a bio-optical model for the Barents Sea to quantitatively link glider and satellite observations.
    Kostakis I; Röttgers R; Orkney A; Bouman HA; Porter M; Cottier F; Berge J; McKee D
    Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2181):20190367. PubMed ID: 32862821
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Remote sensing of ocean chlorophyll: consequence of nonuniform pigment profile.
    Sathyendranath S; Platt T
    Appl Opt; 1989 Feb; 28(3):490-5. PubMed ID: 20548508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimating Oceanic Primary Production Using Vertical Irradiance and Chlorophyll Profiles from Ocean Gliders in the North Atlantic.
    Hemsley VS; Smyth TJ; Martin AP; Frajka-Williams E; Thompson AF; Damerell G; Painter SC
    Environ Sci Technol; 2015 Oct; 49(19):11612-21. PubMed ID: 26301371
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation of radiance reflectance and the concentrations of optically active substances in Lake Mälaren, Sweden, based on direct and inverse solutions of a simple model.
    Pierson DC; Strömbeck N
    Sci Total Environ; 2001 Mar; 268(1-3):171-88. PubMed ID: 11315739
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Underwater optical wireless communications: depth dependent variations in attenuation.
    Johnson LJ; Green RJ; Leeson MS
    Appl Opt; 2013 Nov; 52(33):7867-73. PubMed ID: 24513735
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detecting the Zambezi River plume using observed optical properties.
    Siddorn JR; Bowers DG; Hoguane AM
    Mar Pollut Bull; 2001 Oct; 42(10):942-50. PubMed ID: 11693649
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Study on influencing factors and universality of chlorophyll-a retrieval model in inland water body].
    Huang CC; Li YM; Xu LJ; Yang H; Lü H; Chen X; Wang YH
    Huan Jing Ke Xue; 2013 Feb; 34(2):525-31. PubMed ID: 23668118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of variability in the inherent optical properties on estimations of chlorophyll a by remote sensing in Swedish freshwaters.
    Strömbeck N; Pierson DC
    Sci Total Environ; 2001 Mar; 268(1-3):123-37. PubMed ID: 11315736
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ocean science. The many shades of ocean blue.
    Claustre H; Maritorena S
    Science; 2003 Nov; 302(5650):1514-5. PubMed ID: 14645833
    [No Abstract]   [Full Text] [Related]  

  • 30. VIIRS captures phytoplankton vertical migration in the NE Gulf of Mexico.
    Qi L; Hu C; Barnes BB; Lee Z
    Harmful Algae; 2017 Jun; 66():40-46. PubMed ID: 28602252
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new model for the vertical spectral diffuse attenuation coefficient of downwelling irradiance in turbid coastal waters: validation with in situ measurements.
    Simon A; Shanmugam P
    Opt Express; 2013 Dec; 21(24):30082-106. PubMed ID: 24514558
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling the effects of near-surface plumes of suspended particulate matter on remote-sensing reflectance of coastal waters.
    Yang Q; Stramski D; He MX
    Appl Opt; 2013 Jan; 52(3):359-74. PubMed ID: 23338181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Quantitative analysis of chlorophyll-a reflectance spectrum in red spectral region of water].
    Ma WD; Xing QG; Zhang YZ; Shi P; Liu YL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Feb; 30(2):313-7. PubMed ID: 20384114
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Subsurface chlorophyll maximum layers: enduring enigma or mystery solved?
    Cullen JJ
    Ann Rev Mar Sci; 2015; 7():207-39. PubMed ID: 25251268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Remotely sensed reflectance and its dependence on vertical structure: a theoretical derivation.
    Zaneveld JR
    Appl Opt; 1982 Nov; 21(22):4146-50. PubMed ID: 20401021
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of forward reflectance models and empirical algorithms for chlorophyll concentration of stratified waters.
    Lee Z; Wang Y; Yu X; Shang S; Luis K
    Appl Opt; 2020 Oct; 59(30):9340-9352. PubMed ID: 33104650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Algorithm for estimating chlorophyll-a concentration in case II water body based on bio-optical model].
    Yang W; Chen J; Mausushita B
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jan; 29(1):38-42. PubMed ID: 19385201
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lidar equation for ocean surface and subsurface.
    Josset D; Zhai PW; Hu Y; Pelon J; Lucker PL
    Opt Express; 2010 Sep; 18(20):20862-75. PubMed ID: 20940981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ spectral response of the Arabian Gulf and Sea of Oman coastal waters to bio-optical properties.
    Al Shehhi MR; Gherboudj I; Ghedira H
    J Photochem Photobiol B; 2017 Oct; 175():235-243. PubMed ID: 28915493
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reducing variability that is due to secondary pigments in the retrieval of chlorophyll a concentration from marine reflectance: a case study in the western equatorial Pacific Ocean.
    Gross L; Frouin R; Dupouy C; André JM; Thiria S
    Appl Opt; 2004 Jul; 43(20):4041-54. PubMed ID: 15285096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.