These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 20384152)

  • 41. Active and passive optical remote sensing of the aquatic environment: introduction to the feature issue.
    Lee Z; Churnside J; Mao Z; Wu S; Zibordi G
    Appl Opt; 2020 Apr; 59(10):APS1-APS2. PubMed ID: 32400570
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of chlorophyll-a retrieval algorithms based on MERIS bands for optically varying eutrophic inland lakes.
    Lyu H; Li X; Wang Y; Jin Q; Cao K; Wang Q; Li Y
    Sci Total Environ; 2015 Oct; 530-531():373-382. PubMed ID: 26057542
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multiparameter retrieval of water optical properties from above-water remote-sensing reflectance using the simulated annealing algorithm.
    Salinas SV; Chang CW; Liew SC
    Appl Opt; 2007 May; 46(14):2727-42. PubMed ID: 17446923
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Monte Carlo simulation of spectral reflectance and BRDF of the bubble layer in the upper ocean.
    Ma L; Wang F; Wang C; Wang C; Tan J
    Opt Express; 2015 Sep; 23(19):24274-89. PubMed ID: 26406633
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multiplatform optical monitoring of eutrophication in temporally and spatially variable lakes.
    Vos RJ; Hakvoort JH; Jordans RW; Ibelings BW
    Sci Total Environ; 2003 Aug; 312(1-3):221-43. PubMed ID: 12873412
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Shipborne variable-FOV, dual-wavelength, polarized ocean lidar: design and measurements in the Western Pacific.
    Liu Q; Wu S; Liu B; Liu J; Zhang K; Dai G; Tang J; Chen G
    Opt Express; 2022 Mar; 30(6):8927-8948. PubMed ID: 35299334
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Remote sensing of seawater optical properties and the subsurface phytoplankton layer in coastal waters using an airborne multiwavelength polarimetric ocean lidar.
    Yuan D; Mao Z; Chen P; He Y; Pan D
    Opt Express; 2022 Aug; 30(16):29564-29583. PubMed ID: 36299129
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chlorophyll-a Estimation Around the Antarctica Peninsula Using Satellite Algorithms: Hints from Field Water Leaving Reflectance.
    Zeng C; Xu H; Fischer AM
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27941596
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chlorophyll-a specific volume scattering function of phytoplankton.
    Tan H; Oishi T; Tanaka A; Doerffer R; Tan Y
    Opt Express; 2017 Jun; 25(12):A564-A573. PubMed ID: 28788838
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterizing the phytoplankton soup: pump and plumbing effects on the particle assemblage in underway optical seawater systems.
    Cetinić I; Poulton N; Slade WH
    Opt Express; 2016 Sep; 24(18):20703-15. PubMed ID: 27607674
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters.
    Albert A; Mobley C
    Opt Express; 2003 Nov; 11(22):2873-90. PubMed ID: 19471407
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characteristics of subsurface chlorophyll maxima during the boreal summer in the South China Sea with respect to environmental properties.
    Xu W; Wang G; Cheng X; Jiang L; Zhou W; Cao W
    Sci Total Environ; 2022 May; 820():153243. PubMed ID: 35065118
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Oceanic Rossby waves acting as a "hay rake" for ecosystem floating by-products.
    Dandonneau Y; Vega A; Loisel H; du Penhoat Y; Menkes C
    Science; 2003 Nov; 302(5650):1548-51. PubMed ID: 14645844
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impact of sub-pixel variations on ocean color remote sensing products.
    Lee Z; Hu C; Arnone R; Liu Z
    Opt Express; 2012 Sep; 20(19):20844-54. PubMed ID: 23037208
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inferring inherent optical properties and water constituent profiles from apparent optical properties.
    Fan Y; Li W; Calzado VS; Trees C; Stamnes S; Fournier G; McKee D; Stamnes K
    Opt Express; 2015 Jul; 23(15):A987-1009. PubMed ID: 26367699
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of chlorophyll a concentration detected by remote sensors and other chlorophyll indices in inhomogeneous turbid waters.
    Sokoletsky LG; Yacobi YZ
    Appl Opt; 2011 Oct; 50(30):5770-9. PubMed ID: 22015403
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spectral interdependence of remote-sensing reflectance and its implications on the design of ocean color satellite sensors.
    Lee Z; Shang S; Hu C; Zibordi G
    Appl Opt; 2014 May; 53(15):3301-10. PubMed ID: 24922219
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Band shifting for ocean color multi-spectral reflectance data.
    Mélin F; Sclep G
    Opt Express; 2015 Feb; 23(3):2262-79. PubMed ID: 25836095
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands.
    Gilerson AA; Gitelson AA; Zhou J; Gurlin D; Moses W; Ioannou I; Ahmed SA
    Opt Express; 2010 Nov; 18(23):24109-25. PubMed ID: 21164758
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The relationship between upwelling underwater polarization and attenuation/absorption ratio.
    Ibrahim A; Gilerson A; Harmel T; Tonizzo A; Chowdhary J; Ahmed S
    Opt Express; 2012 Nov; 20(23):25662-80. PubMed ID: 23187385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.