BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 20384239)

  • 21. Intravascular ultrasound image segmentation: a three-dimensional fast-marching method based on gray level distributions.
    Cardinal MH; Meunier J; Soulez G; Maurice RL; Therasse E; Cloutier G
    IEEE Trans Med Imaging; 2006 May; 25(5):590-601. PubMed ID: 16689263
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A method and software for segmentation of anatomic object ensembles by deformable m-reps.
    Pizer SM; Fletcher PT; Joshi S; Gash AG; Stough J; Thall A; Tracton G; Chaney EL
    Med Phys; 2005 May; 32(5):1335-45. PubMed ID: 15984685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A method on calculating high-dimensional mutual information and its application to registration of multiple ultrasound images.
    Wang B; Shen Y
    Ultrasonics; 2006 Dec; 44 Suppl 1():e79-83. PubMed ID: 16949629
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Symmetric image registration.
    Rogelj P; Kovacic S
    Med Image Anal; 2006 Jun; 10(3):484-93. PubMed ID: 15896998
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Face recognition using face-ARG matching.
    Park BG; Lee KM; Lee SU
    IEEE Trans Pattern Anal Mach Intell; 2005 Dec; 27(12):1982-8. PubMed ID: 16355664
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel technique of three-dimensional reconstruction segmentation and analysis for sliced images of biological tissues.
    Li J; Zhao HY; Ruan XY; Xu YQ; Meng WZ; Li KP; Zhang JQ
    J Zhejiang Univ Sci B; 2005 Dec; 6(12):1210-2. PubMed ID: 16358381
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Volume quantification by fuzzy logic modelling in freehand ultrasound imaging.
    Betrouni N; Lopes R; Makni N; Dewalle AS; Vermandel M; Rousseau J
    Ultrasonics; 2009 Dec; 49(8):646-52. PubMed ID: 19409591
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fully automatic plaque segmentation in 3-D carotid ultrasound images.
    Cheng J; Li H; Xiao F; Fenster A; Zhang X; He X; Li L; Ding M
    Ultrasound Med Biol; 2013 Dec; 39(12):2431-46. PubMed ID: 24063959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inferring segmented dense motion layers using 5D tensor voting.
    Min C; Medioni G
    IEEE Trans Pattern Anal Mach Intell; 2008 Sep; 30(9):1589-602. PubMed ID: 18617717
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Repeatability of diagnostic ultrasonography in the assessment of the equine superficial digital flexor tendon.
    Pickersgill CH; Marr CM; Reid SW
    Equine Vet J; 2001 Jan; 33(1):33-7. PubMed ID: 11191607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unsupervised 4D myocardium segmentation with a Markov Random Field based deformable model.
    Cordero-Grande L; Vegas-Sánchez-Ferrero G; Casaseca-de-la-Higuera P; San-Román-Calvar JA; Revilla-Orodea A; Martín-Fernández M; Alberola-López C
    Med Image Anal; 2011 Jun; 15(3):283-301. PubMed ID: 21354361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automatic measurement of dermal thickness from B-scan ultrasound images using active contours.
    Lagarde JM; George J; Soulcié R; Black D
    Skin Res Technol; 2005 May; 11(2):79-90. PubMed ID: 15807804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tendon-motion tracking in an ultrasound image sequence using optical-flow-based block matching.
    Chuang BI; Hsu JH; Kuo LC; Jou IM; Su FC; Sun YN
    Biomed Eng Online; 2017 Apr; 16(1):47. PubMed ID: 28427411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The cross-sectional areas of normal equine digital flexor tendons determined ultrasonographically.
    Smith RK; Jones R; Webbon PM
    Equine Vet J; 1994 Nov; 26(6):460-5. PubMed ID: 7889919
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure-related echoes in ultrasonographic images of equine superficial digital flexor tendons.
    van Schie HT; Bakker EM
    Am J Vet Res; 2000 Feb; 61(2):202-9. PubMed ID: 10685694
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Variations during ageing in the three-dimensional anatomical arrangement of fascicles within the equine superficial digital flexor tendon.
    Ali OJ; Comerford EJ; Clegg PD; Canty-Laird EG
    Eur Cell Mater; 2018 Feb; 35():87-102. PubMed ID: 29437201
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Helical sub-structures in energy-storing tendons provide a possible mechanism for efficient energy storage and return.
    Thorpe CT; Klemt C; Riley GP; Birch HL; Clegg PD; Screen HR
    Acta Biomater; 2013 Aug; 9(8):7948-56. PubMed ID: 23669621
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional optic axis determination using variable-incidence-angle polarization-optical coherence tomography.
    Ugryumova N; Gangnus SV; Matcher SJ
    Opt Lett; 2006 Aug; 31(15):2305-7. PubMed ID: 16832467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strain Elastography of Injured Equine Superficial Digital Flexor Tendons: A Reliability Study of Manual Measurements.
    Secchi V; Masala G; Corda A; Corda F; Potop E; Barbero Fernandez A; Pinna Parpaglia ML; Sanna Passino E
    Animals (Basel); 2021 Mar; 11(3):. PubMed ID: 33809249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the ultrasonic properties of tendon.
    Garcia T; Hornof WJ; Insana MF
    Ultrasound Med Biol; 2003 Dec; 29(12):1787-97. PubMed ID: 14698346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.