These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 20384278)
1. The effect of aeration, agitation and light on biohydrogen production by Rhodobacter sphaeroides NCIMB 8253. Jaapar SZ; Kalil MS; Anuar N Pak J Biol Sci; 2009 Sep; 12(18):1253-9. PubMed ID: 20384278 [TBL] [Abstract][Full Text] [Related]
2. Introduction of Glyoxylate Bypass Increases Hydrogen Gas Yield from Acetate and l-Glutamate in Shimizu T; Teramoto H; Inui M Appl Environ Microbiol; 2019 Jan; 85(2):. PubMed ID: 30413472 [No Abstract] [Full Text] [Related]
3. Effects of light/dark cycle, mixing pattern and partial pressure of H2 on biohydrogen production by Rhodobacter sphaeroides ZX-5. Li X; Wang Y; Zhang S; Chu J; Zhang M; Huang M; Zhuang Y Bioresour Technol; 2011 Jan; 102(2):1142-8. PubMed ID: 20884205 [TBL] [Abstract][Full Text] [Related]
4. Hydrogen production by Rhodobacter sphaeroides strain O.U.001 using spent media of Enterobacter cloacae strain DM11. Nath K; Kumar A; Das D Appl Microbiol Biotechnol; 2005 Sep; 68(4):533-41. PubMed ID: 15666144 [TBL] [Abstract][Full Text] [Related]
5. Semi-continuous photo-fermentative H2 production by Rhodobacter sphaeroides: effect of decanting volume ratio. Kim DH; Kim MS Bioresour Technol; 2012 Jan; 103(1):481-3. PubMed ID: 22036913 [TBL] [Abstract][Full Text] [Related]
6. Effect of pH on optimization of photofermentative hydrogen production by co-culture of Rhodobacter sphaeroides-NMBL-02 and Bacillus firmus-NMBL-03. Pandey A; Dolly S; Semwal D; Pandey A Cell Mol Biol (Noisy-le-grand); 2017 Jul; 63(6):68-72. PubMed ID: 28968212 [TBL] [Abstract][Full Text] [Related]
7. Biohydrogen and polyhydroxyalkanoate co-production by Enterobacter aerogenes and Rhodobacter sphaeroides from Calophyllum inophyllum oil cake. Arumugam A; Sandhya M; Ponnusami V Bioresour Technol; 2014 Jul; 164():170-6. PubMed ID: 24859207 [TBL] [Abstract][Full Text] [Related]
8. Exploitation of dark fermented effluent of cheese whey by co-culture of Rhodobacter sphaeroides and Bacillus firmus for photo-hydrogen production. Pandey A; Pandey A Cell Mol Biol (Noisy-le-grand); 2017 Jul; 63(6):93-99. PubMed ID: 28968216 [TBL] [Abstract][Full Text] [Related]
9. Concomitant biohydrogen and poly-β-hydroxybutyrate production from dark fermentation effluents by adapted Rhodobacter sphaeroides and mixed photofermentative cultures. Ghimire A; Valentino S; Frunzo L; Pirozzi F; Lens PN; Esposito G Bioresour Technol; 2016 Oct; 217():157-64. PubMed ID: 27005789 [TBL] [Abstract][Full Text] [Related]
10. Effects of pH and carbon sources on biohydrogen production by co-culture of Clostridium butyricum and Rhodobacter sphaeroides. Lee JY; Chen XJ; Lee EJ; Min KS J Microbiol Biotechnol; 2012 Mar; 22(3):400-6. PubMed ID: 22450797 [TBL] [Abstract][Full Text] [Related]
11. The role of pH control on biohydrogen production by single stage hybrid dark- and photo-fermentation. Zagrodnik R; Laniecki M Bioresour Technol; 2015 Oct; 194():187-95. PubMed ID: 26196419 [TBL] [Abstract][Full Text] [Related]
12. Bio-hydrogen production using a two-stage fermentation process. Alalayah WM; Kalil MS; Kadhum AA; Jahim JM; Jaapar SZ; Alauj NM Pak J Biol Sci; 2009 Nov; 12(22):1462-7. PubMed ID: 20180320 [TBL] [Abstract][Full Text] [Related]
13. Novel properties of photofermentative biohydrogen production by purple bacteria Rhodobacter sphaeroides: effects of protonophores and inhibitors of responsible enzymes. Gabrielyan L; Sargsyan H; Trchounian A Microb Cell Fact; 2015 Sep; 14():131. PubMed ID: 26337489 [TBL] [Abstract][Full Text] [Related]
14. Biohydrogen production by purple non-sulfur bacteria Rhodobacter sphaeroides: Effect of low-intensity electromagnetic irradiation. Gabrielyan L; Sargsyan H; Trchounian A J Photochem Photobiol B; 2016 Sep; 162():592-596. PubMed ID: 27479839 [TBL] [Abstract][Full Text] [Related]
15. An unexpected negative influence of light intensity on hydrogen production by dark fermentative bacteria Clostridium beijerinckii. Zagrodnik R; Laniecki M Bioresour Technol; 2016 Jan; 200():1039-43. PubMed ID: 26602144 [TBL] [Abstract][Full Text] [Related]
16. Light energy utilization and microbial catalysis for enhanced biohydrogen: Ternary coupling system of triethanolamine-mediated Fe@C-Rhodobacter sphaeroides. Jiang Q; Li Y; Wang M; Cao W; Yang X; Zhang S; Guo L Bioresour Technol; 2024 Jun; 401():130733. PubMed ID: 38670287 [TBL] [Abstract][Full Text] [Related]
17. Hydrogen production from starch by co-culture of Clostridium acetobutylicum and Rhodobacter sphaeroides in one step hybrid dark- and photofermentation in repeated fed-batch reactor. Zagrodnik R; Łaniecki M Bioresour Technol; 2017 Jan; 224():298-306. PubMed ID: 27810246 [TBL] [Abstract][Full Text] [Related]
18. Photofermentative production of hydrogen and poly-β-hydroxybutyrate from dark fermentation products. Luongo V; Ghimire A; Frunzo L; Fabbricino M; d'Antonio G; Pirozzi F; Esposito G Bioresour Technol; 2017 Mar; 228():171-175. PubMed ID: 28063359 [TBL] [Abstract][Full Text] [Related]
19. Impact of light spectra on photo-fermentative biohydrogen production by Rhodobacter sphaeroides KKU-PS1. Tiang MF; Hanipa MAF; Mahmod SS; Zainuddin MT; Lutfi AAI; Jahim JM; Takriff MS; Reungsang A; Wu SY; Abdul PM Bioresour Technol; 2024 Feb; 394():130222. PubMed ID: 38109981 [TBL] [Abstract][Full Text] [Related]
20. Waste-to-energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy. Sharma S; Basu S; Shetti NP; Aminabhavi TM Sci Total Environ; 2020 Apr; 713():136633. PubMed ID: 32019020 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]