These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 20384345)
61. A surge of copper accumulation in cell division revealed its cyclical kinetics in synchronized green alga Chlamydomonas reinhardtii. Deng S; Wang WX Sci Total Environ; 2023 Nov; 899():165566. PubMed ID: 37474058 [TBL] [Abstract][Full Text] [Related]
62. Predicting cadmium accumulation and toxicity in a green alga in the presence of varying essential element concentrations using a biotic ligand model. Lavoie M; Campbell PG; Fortin C Environ Sci Technol; 2014 Jan; 48(2):1222-9. PubMed ID: 24341312 [TBL] [Abstract][Full Text] [Related]
63. Copper toxicity in the microalga Chlamydomonas reinhardtii: an integrated approach. Jamers A; Blust R; De Coen W; Griffin JL; Jones OA Biometals; 2013 Oct; 26(5):731-40. PubMed ID: 23775669 [TBL] [Abstract][Full Text] [Related]
64. Biotic ligand model does not predict the bioavailability of rare Earth elements in the presence of organic ligands. Zhao CM; Wilkinson KJ Environ Sci Technol; 2015 Feb; 49(4):2207-14. PubMed ID: 25611881 [TBL] [Abstract][Full Text] [Related]
65. Biouptake of a rare earth metal (Nd) by Chlamydomonas reinhardtii - Bioavailability of small organic complexes and role of hardness ions. Yang G; Wilkinson KJ Environ Pollut; 2018 Dec; 243(Pt A):263-269. PubMed ID: 30189390 [TBL] [Abstract][Full Text] [Related]
66. Modeling interactions and toxicity of Cu-Zn mixtures to zebrafish larvae. Gao Y; Feng J; Wang C; Zhu L Ecotoxicol Environ Saf; 2017 Apr; 138():146-153. PubMed ID: 28043033 [TBL] [Abstract][Full Text] [Related]
67. Some fundamental (and often overlooked) considerations underlying the free ion activity and biotic ligand models. Hassler CS; Slaveykova VI; Wilkinson KJ Environ Toxicol Chem; 2004 Feb; 23(2):283-91. PubMed ID: 14982373 [TBL] [Abstract][Full Text] [Related]
68. Influence of essential elements on cadmium uptake and toxicity in a unicellular green alga: the protective effect of trace zinc and cobalt concentrations. Lavoie M; Fortin C; Campbell PG Environ Toxicol Chem; 2012 Jul; 31(7):1445-52. PubMed ID: 22544654 [TBL] [Abstract][Full Text] [Related]
69. Toxicity Assessment of Binary Metal Mixtures (Copper-Zinc) to Nitrification in Soilless Culture with the Extended Biotic Ligand Model. Liu A; Li J; Li M; Niu XY; Wang J Arch Environ Contam Toxicol; 2017 Feb; 72(2):312-319. PubMed ID: 28050624 [TBL] [Abstract][Full Text] [Related]
70. The biotic ligand model for plants and metals: technical challenges for field application. Antunes PM; Berkelaar EJ; Boyle D; Hale BA; Hendershot W; Voigt A Environ Toxicol Chem; 2006 Mar; 25(3):875-82. PubMed ID: 16566174 [TBL] [Abstract][Full Text] [Related]
71. Biotic ligand model explains the effects of competition but not complexation for Sm biouptake by Chlamydomonas reinhardtii. Tan QG; Yang G; Wilkinson KJ Chemosphere; 2017 Feb; 168():426-434. PubMed ID: 27810543 [TBL] [Abstract][Full Text] [Related]
72. Numerical approach to speciation and estimation of parameters used in modeling trace metal bioavailability. Sander SG; Hunter KA; Harms H; Wells M Environ Sci Technol; 2011 Aug; 45(15):6388-95. PubMed ID: 21751821 [TBL] [Abstract][Full Text] [Related]
73. Role of iron in gene expression and in the modulation of copper uptake in a freshwater alga: Insights on Cu and Fe assimilation pathways. Kochoni E; Doose C; Gonzalez P; Fortin C Environ Pollut; 2022 Jul; 305():119311. PubMed ID: 35439593 [TBL] [Abstract][Full Text] [Related]
74. Ni uptake by a green alga. 1. Validation of equilibrium models for complexation effects. Worms IA; Parthasarathy N; Wilkinson KJ Environ Sci Technol; 2007 Jun; 41(12):4258-63. PubMed ID: 17626422 [TBL] [Abstract][Full Text] [Related]
75. Modeling acute toxicity of metal mixtures to wheat (Triticum aestivum L.) using the biotic ligand model-based toxic units method. Wu M; Wang X; Jia Z; De Schamphelaere K; Ji D; Li X; Chen X Sci Rep; 2017 Aug; 7(1):9443. PubMed ID: 28842695 [TBL] [Abstract][Full Text] [Related]
76. Predicting the toxic effects of Cu and Cd on Chlamydomonas reinhardtii with a DEBtox model. Xie M; Sun Y; Feng J; Gao Y; Zhu L Aquat Toxicol; 2019 May; 210():106-116. PubMed ID: 30844631 [TBL] [Abstract][Full Text] [Related]
77. Linking the chemical speciation of cerium to its bioavailability in water for a freshwater alga. El-Akl P; Smith S; Wilkinson KJ Environ Toxicol Chem; 2015 Aug; 34(8):1711-9. PubMed ID: 25772589 [TBL] [Abstract][Full Text] [Related]
78. Cadmium uptake by a green alga can be predicted by equilibrium modelling. Kola H; Wilkinson KJ Environ Sci Technol; 2005 May; 39(9):3040-7. PubMed ID: 15926550 [TBL] [Abstract][Full Text] [Related]
79. Bioaccumulation of Nanosilver by Chlamydomonas reinhardtii-nanoparticle or the free ion? Leclerc S; Wilkinson KJ Environ Sci Technol; 2014; 48(1):358-64. PubMed ID: 24320028 [TBL] [Abstract][Full Text] [Related]
80. Extended biotic ligand model for prediction of mixture toxicity of Cd and Pb using single metal toxicity data. Jho EH; An J; Nam K Environ Toxicol Chem; 2011 Jul; 30(7):1697-703. PubMed ID: 21538486 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]