These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 20384359)

  • 1. Electrorheological phenomena in polyhedral silsesquioxane cage structure/PDMS systems.
    Carl McIntyre E; Joon Oh H; Green PF
    ACS Appl Mater Interfaces; 2010 Apr; 2(4):965-8. PubMed ID: 20384359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrorheology of polystyrene filler/polyhedral silsesquioxane suspensions.
    McIntyre EC; Yang H; Green PF
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2148-53. PubMed ID: 22428800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrorheology of suspensions containing interfacially active constituents.
    McIntyre C; Yang H; Green PF
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):8925-31. PubMed ID: 23977824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrorheological suspensions of laponite in oil: rheometry studies.
    Parmar KP; Méheust Y; Schjelderupsen B; Fossum JO
    Langmuir; 2008 Mar; 24(5):1814-22. PubMed ID: 18215081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blends of amphiphilic poly(dimethylsiloxane) and nonamphiphilic octaisobutyl-POSS at the air/water interface.
    Hottle JR; Deng J; Kim HJ; Farmer-Creely CE; Viers BD; Esker AR
    Langmuir; 2005 Mar; 21(6):2250-9. PubMed ID: 15752013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blends of amphiphilic trisilanolisobutyl-POSS and phosphine oxide substituted poly(dimethylsiloxane) at the air/water interface.
    Kim HJ; Deng J; Lalli JH; Riffle JS; Viers BD; Esker AR
    Langmuir; 2005 Mar; 21(5):1908-16. PubMed ID: 15723488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrorheological Effects of Synthesized Octa-cyanopropylsilsesquioxane Cage Structure.
    Omambala JR; McIntyre EC; Gallo AA
    ACS Omega; 2019 Dec; 4(25):20955-20963. PubMed ID: 31867486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new approach of enhancing the shear stress of electrorheological fluids of montmorillonite nanocomposite by emulsion intercalation of poly-N-methaniline.
    Lu J; Zhao X
    J Colloid Interface Sci; 2004 May; 273(2):651-7. PubMed ID: 15082406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrorheological properties of polyaniline suspensions: field-induced liquid to solid transition and residual gel structure.
    Hiamtup P; Sirivat A; Jamieson AM
    J Colloid Interface Sci; 2006 Mar; 295(1):270-8. PubMed ID: 16168424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and electrorheological property of rare earth modified amorphous BaxSr1-xTiO3 gel electrorheological fluid.
    Wu Q; Zhao By; Chen le S; Fang C; Hu Ka
    J Colloid Interface Sci; 2005 Feb; 282(2):493-8. PubMed ID: 15589557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing the Electrorheological Effect of Polyhedral Silsesquioxane Cage Structures with Different Numbers of Cyanopropyl Functional Groups.
    Omambala JR; McIntyre EC; Gallo AA
    ACS Omega; 2019 Dec; 4(25):20964-20971. PubMed ID: 31867487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrorheological Effect in Suspension Composed of Starch Powder and Silicone Oil.
    Negita K; Itou H; Yakou T
    J Colloid Interface Sci; 1999 Jan; 209(1):251-254. PubMed ID: 9878161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient response of an electrorheological fluid under square-wave electric field excitation.
    Tian Y; Li C; Zhang M; Meng Y; Wen S
    J Colloid Interface Sci; 2005 Aug; 288(1):290-7. PubMed ID: 15927589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-static electrorheological properties of hematite/silicone oil suspensions under DC electric fields.
    Espin MJ; Delgado AV; Płocharski J
    Langmuir; 2005 May; 21(11):4896-903. PubMed ID: 15896029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of liquid phase on nanoparticle-based giant electrorheological fluid.
    Gong X; Wu J; Huang X; Wen W; Sheng P
    Nanotechnology; 2008 Apr; 19(16):165602. PubMed ID: 21825646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrorheological fluids based on glycerol-activated titania gel particles and silicone oil with high yield strength.
    Yin JB; Zhao XP
    J Colloid Interface Sci; 2003 Jan; 257(2):228-36. PubMed ID: 16256474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure parameter of electrorheological fluids in shear flow.
    Jiang J; Tian Y; Meng Y
    Langmuir; 2011 May; 27(10):5814-23. PubMed ID: 21488694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly stable nanofluid based on polyhedral oligomeric silsesquioxane-decorated graphene oxide nanosheets and its enhanced electro-responsive behavior.
    Li Y; Guan Y; Liu Y; Yin J; Zhao X
    Nanotechnology; 2016 May; 27(19):195702. PubMed ID: 27041243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational exploration of polymer nanocomposite mechanical property modification via cross-linking topology.
    Lacevic N; Gee RH; Saab A; Maxwell R
    J Chem Phys; 2008 Sep; 129(12):124903. PubMed ID: 19045061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(N-isopropylacrylamide) nanocrosslinked by polyhedral oligomeric silsesquioxane: temperature-responsive behavior of hydrogels.
    Mu J; Zheng S
    J Colloid Interface Sci; 2007 Mar; 307(2):377-85. PubMed ID: 17196603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.