BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 2038500)

  • 1. Mitochondria of mammalian Plasmodium spp.
    Fry M; Beesley JE
    Parasitology; 1991 Feb; 102 Pt 1():17-26. PubMed ID: 2038500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of NADH by a rotenone and antimycin-sensitive pathway in the mitochondrion of procyclic Trypanosoma brucei brucei.
    Beattie DS; Obungu VH; Kiaira JK
    Mol Biochem Parasitol; 1994 Mar; 64(1):87-94. PubMed ID: 8078526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial dehydrogenases in the aerobic respiratory chain of the rodent malaria parasite Plasmodium yoelii yoelii.
    Kawahara K; Mogi T; Tanaka TQ; Hata M; Miyoshi H; Kita K
    J Biochem; 2009 Feb; 145(2):229-37. PubMed ID: 19060309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study.
    Sottocasa GL; Kuylenstierna B; Ernster L; Bergstrand A
    J Cell Biol; 1967 Feb; 32(2):415-38. PubMed ID: 10976232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial ubiquinol-cytochrome c reductase and cytochrome c oxidase: chemotherapeutic targets in malarial parasites.
    Krungkrai J; Krungkrai SR; Suraveratum N; Prapunwattana P
    Biochem Mol Biol Int; 1997 Aug; 42(5):1007-14. PubMed ID: 9285069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The presence of rotenone-sensitive NADH dehydrogenase in the long slender bloodstream and the procyclic forms of Trypanosoma brucei brucei.
    Beattie DS; Howton MM
    Eur J Biochem; 1996 Nov; 241(3):888-94. PubMed ID: 8944779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial NADH dehydrogenase from Plasmodium falciparum and Plasmodium berghei.
    Krungkrai J; Kanchanarithisak R; Krungkrai SR; Rochanakij S
    Exp Parasitol; 2002 Jan; 100(1):54-61. PubMed ID: 11971654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial hydrogen peroxide formation and the fumarate reductase of Hymenolepis diminuta.
    Fioravanti CF; Reisig JM
    J Parasitol; 1990 Aug; 76(4):457-63. PubMed ID: 2380854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction.
    Berridge MV; Tan AS
    Arch Biochem Biophys; 1993 Jun; 303(2):474-82. PubMed ID: 8390225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state.
    Kushnareva Y; Murphy AN; Andreyev A
    Biochem J; 2002 Dec; 368(Pt 2):545-53. PubMed ID: 12180906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative phosphorylation and rotenone-insensitive malate- and NADH-quinone oxidoreductases in Plasmodium yoelii yoelii mitochondria in situ.
    Uyemura SA; Luo S; Vieira M; Moreno SN; Docampo R
    J Biol Chem; 2004 Jan; 279(1):385-93. PubMed ID: 14561763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct interaction between the internal NADH: ubiquinone oxidoreductase and ubiquinol:cytochrome c oxidoreductase in the reduction of exogenous quinones by yeast mitochondria.
    Beattie DS; Japa S; Howton M; Zhu QS
    Arch Biochem Biophys; 1992 Feb; 292(2):499-505. PubMed ID: 1309974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respiratory chain of the lung fluke Paragonimus westermani: facultative anaerobic mitochondria.
    Takamiya S; Wang H; Hiraishi A; Yu Y; Hamajima F; Aoki T
    Arch Biochem Biophys; 1994 Jul; 312(1):142-50. PubMed ID: 8031121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pathway of electron flow through ubiquinol:cytochrome c oxidoreductase in the respiratory chain. Evidence from inhibition studies for a modified 'Q cycle'.
    Halestrap AP
    Biochem J; 1982 Apr; 204(1):49-59. PubMed ID: 6288019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of electron transfer from ferrocytochrome b to ubiquinone, cytochrome c1 and duroquinone by antimycin.
    VON Jagow G; Bohrer C
    Biochim Biophys Acta; 1975 Jun; 387(3):409-24. PubMed ID: 166667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extramitochondrial release of hydrogen peroxide from insect and mouse liver mitochondria using the respiratory inhibitors phosphine, myxothiazol, and antimycin and spectral analysis of inhibited cytochromes.
    Bolter CJ; Chefurka W
    Arch Biochem Biophys; 1990 Apr; 278(1):65-72. PubMed ID: 2321971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of succinate in the respiratory chain of Trypanosoma brucei procyclic trypomastigotes.
    Turrens JF
    Biochem J; 1989 Apr; 259(2):363-8. PubMed ID: 2719653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deficiency of the reduced nicotinamide adenine dinucleotide dehydrogenase component of complex I of mitochondrial electron transport. Fatal infantile lactic acidosis and hypermetabolism with skeletal-cardiac myopathy and encephalopathy.
    Hoppel CL; Kerr DS; Dahms B; Roessmann U
    J Clin Invest; 1987 Jul; 80(1):71-7. PubMed ID: 3110216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coenzyme Q analogues reconstitute electron transport and proton ejection but not the antimycin-induced "red shift" in mitochondria from coenzyme Q deficient mutants of the yeast Saccharomyces cerevisiae.
    Beattie DS; Clejan L
    Biochemistry; 1986 Mar; 25(6):1395-402. PubMed ID: 3008830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The utilization of iron and its complexes by mammalian mitochondria.
    Barnes R; Connelly JL; Jones OT
    Biochem J; 1972 Aug; 128(5):1043-55. PubMed ID: 4345350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.